1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
use std::convert::TryFrom;
use std::format;
use std::io::{self, BufRead, BufReader, Write};
use teaclave_types::{FunctionArguments, FunctionRuntime};
use rusty_machine::learning::pca::PCA;
use rusty_machine::learning::UnSupModel;
use rusty_machine::linalg;
use rusty_machine::linalg::BaseMatrix;
const IN_DATA: &str = "input_data";
const OUT_RESULT: &str = "output_data";
#[derive(Default)]
pub struct PrincipalComponentsAnalysis;
#[derive(serde::Deserialize)]
struct PrincipalComponentsAnalysisArguments {
n: usize,
center: bool,
feature_size: usize,
}
impl TryFrom<FunctionArguments> for PrincipalComponentsAnalysisArguments {
type Error = anyhow::Error;
fn try_from(arguments: FunctionArguments) -> Result<Self, Self::Error> {
use anyhow::Context;
serde_json::from_str(&arguments.into_string()).context("Cannot deserialize arguments")
}
}
impl PrincipalComponentsAnalysis {
pub const NAME: &'static str = "builtin_principal_components_analysis";
pub fn new() -> Self {
Default::default()
}
pub fn run(
&self,
arguments: FunctionArguments,
runtime: FunctionRuntime,
) -> anyhow::Result<String> {
let args = PrincipalComponentsAnalysisArguments::try_from(arguments)?;
let input = runtime.open_input(IN_DATA)?;
let (flattend_features, targets) = parse_input_data(input, args.feature_size)?;
let data_size = targets.len();
let input_features = linalg::Matrix::new(data_size, args.feature_size, flattend_features);
let mut model = PCA::new(args.n, args.center);
model.train(&input_features)?;
let predict_result = model.predict(&input_features)?;
let mut output = runtime.create_output(OUT_RESULT)?;
for i in 0..predict_result.rows() {
for j in 0..predict_result.cols() {
if j == predict_result.cols() - 1 {
write!(&mut output, "{:?}", predict_result[[i, j]])?;
} else {
write!(&mut output, "{:?},", predict_result[[i, j]])?;
}
}
writeln!(&mut output)?;
}
Ok(format!(
"transform {} rows * {} cols lines of data.",
predict_result.rows(),
predict_result.cols()
))
}
}
fn parse_input_data(
input: impl io::Read,
feature_size: usize,
) -> anyhow::Result<(Vec<f64>, Vec<f64>)> {
let reader = BufReader::new(input);
let mut targets = Vec::<f64>::new();
let mut features = Vec::new();
for line_result in reader.lines() {
let line = line_result?;
let trimed_line = line.trim();
anyhow::ensure!(!trimed_line.is_empty(), "Empty line");
let mut v: Vec<f64> = trimed_line
.split(',')
.map(|x| x.parse::<f64>())
.collect::<std::result::Result<_, _>>()?;
anyhow::ensure!(
v.len() == feature_size + 1,
"Data format error: column len = {}, expected = {}",
v.len(),
feature_size + 1
);
let label = v.swap_remove(feature_size);
targets.push(label);
features.extend(v);
}
Ok((features, targets))
}
#[cfg(feature = "enclave_unit_test")]
pub mod tests {
use super::*;
use serde_json::json;
use std::path::Path;
use std::untrusted::fs;
use teaclave_crypto::*;
use teaclave_runtime::*;
use teaclave_test_utils::*;
use teaclave_types::*;
pub fn run_tests() -> bool {
run_tests!(test_pca_predict)
}
fn test_pca_predict() {
let args = FunctionArguments::from_json(json!({
"n": 2,
"feature_size": 4,
"center":true
}))
.unwrap();
let base = Path::new("fixtures/functions/princopal_components_analysis");
let input_data_file = base.join("input.txt");
let output_data_file = base.join("result.txt");
let expected_output = base.join("expected_result.txt");
let input_files = StagedFiles::new(hashmap!(
IN_DATA =>
StagedFileInfo::new(&input_data_file, TeaclaveFile128Key::random(), FileAuthTag::mock()),
));
let output_files = StagedFiles::new(hashmap!(
OUT_RESULT =>
StagedFileInfo::new(&output_data_file, TeaclaveFile128Key::random(), FileAuthTag::mock()),
));
let runtime = Box::new(RawIoRuntime::new(input_files, output_files));
let summary = PrincipalComponentsAnalysis::new()
.run(args, runtime)
.unwrap();
assert_eq!(summary, "transform 90 rows * 2 cols lines of data.");
let result = fs::read_to_string(&output_data_file).unwrap();
let expected = fs::read_to_string(&expected_output).unwrap();
assert_eq!(&result[..], &expected[..]);
}
}