1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::convert::TryFrom;
use std::format;
use std::io::{self, BufRead, BufReader, Write};

use teaclave_types::{FunctionArguments, FunctionRuntime};

use rusty_machine::learning::logistic_reg::LogisticRegressor;
use rusty_machine::learning::optim::grad_desc::GradientDesc;
use rusty_machine::learning::SupModel;
use rusty_machine::linalg;

const TRAINING_DATA: &str = "training_data";
const OUT_MODEL_FILE: &str = "model_file";

#[derive(Default)]
pub struct LogisticRegressionTrain;

#[derive(serde::Deserialize)]
struct LogisticRegressionTrainArguments {
    alg_alpha: f64,
    alg_iters: usize,
    feature_size: usize,
}

impl TryFrom<FunctionArguments> for LogisticRegressionTrainArguments {
    type Error = anyhow::Error;

    fn try_from(arguments: FunctionArguments) -> Result<Self, Self::Error> {
        use anyhow::Context;
        serde_json::from_str(&arguments.into_string()).context("Cannot deserialize arguments")
    }
}

impl LogisticRegressionTrain {
    pub const NAME: &'static str = "builtin-logistic-regression-train";

    pub fn new() -> Self {
        Default::default()
    }

    pub fn run(
        &self,
        arguments: FunctionArguments,
        runtime: FunctionRuntime,
    ) -> anyhow::Result<String> {
        let args = LogisticRegressionTrainArguments::try_from(arguments)?;

        let input = runtime.open_input(TRAINING_DATA)?;
        let (flattend_features, targets) = parse_training_data(input, args.feature_size)?;
        let data_size = targets.len();
        let data_matrix = linalg::Matrix::new(data_size, args.feature_size, flattend_features);
        let targets = linalg::Vector::new(targets);

        let gd = GradientDesc::new(args.alg_alpha, args.alg_iters);
        let mut lr = LogisticRegressor::new(gd);
        lr.train(&data_matrix, &targets)?;
        let model = Model::new(
            args.alg_alpha,
            args.alg_iters,
            lr.parameters().unwrap().data().to_owned(),
        );

        let model_json = serde_json::to_string(&model)?;
        let mut model_file = runtime.create_output(OUT_MODEL_FILE)?;
        model_file.write_all(model_json.as_bytes())?;

        Ok(format!("Trained {} lines of data.", data_size))
    }
}

// LogisticRegressor does not support serde, so we use this intermedia structure
#[derive(Debug, serde::Serialize, serde::Deserialize)]
pub struct Model {
    // for GradientDesc
    alpha: f64,
    iters: usize,
    // for BaseLogisticRegressor
    parameters: Vec<f64>,
}

impl Model {
    pub fn new(alpha: f64, iters: usize, parameters: Vec<f64>) -> Self {
        Self {
            alpha,
            iters,
            parameters,
        }
    }

    pub fn alg(&self) -> GradientDesc {
        GradientDesc::new(self.alpha, self.iters)
    }

    pub fn parameters(&self) -> linalg::Vector<f64> {
        linalg::Vector::from(self.parameters.as_slice())
    }
}

fn parse_training_data(
    input: impl io::Read,
    feature_size: usize,
) -> anyhow::Result<(Vec<f64>, Vec<f64>)> {
    let reader = BufReader::new(input);
    let mut targets = Vec::<f64>::new();
    let mut features = Vec::new();

    for line_result in reader.lines() {
        let line = line_result?;
        let trimed_line = line.trim();
        anyhow::ensure!(!trimed_line.is_empty(), "Empty line");

        let mut v: Vec<f64> = trimed_line
            .split(',')
            .map(|x| x.parse::<f64>())
            .collect::<std::result::Result<_, _>>()?;

        anyhow::ensure!(
            v.len() == feature_size + 1,
            "Data format error: column len = {}, expected = {}",
            v.len(),
            feature_size + 1
        );

        let label = v.swap_remove(feature_size);
        targets.push(label);
        features.extend(v);
    }

    Ok((features, targets))
}

#[cfg(feature = "enclave_unit_test")]
pub mod tests {
    use super::*;
    use serde_json::json;
    use std::path::Path;
    use std::untrusted::fs;
    use teaclave_crypto::*;
    use teaclave_runtime::*;
    use teaclave_test_utils::*;
    use teaclave_types::*;

    pub fn run_tests() -> bool {
        run_tests!(test_logistic_regression_train)
    }

    fn test_logistic_regression_train() {
        let arguments = FunctionArguments::from_json(json!({
            "alg_alpha": 0.3,
            "alg_iters": 100,
            "feature_size": 30
        }))
        .unwrap();

        let base = Path::new("fixtures/functions/logistic_regression_training");
        let training_data = base.join("train.txt");
        let plain_output = base.join("model.txt.out");
        let expected_output = base.join("expected_model.txt");

        let input_files = StagedFiles::new(hashmap!(
            TRAINING_DATA =>
            StagedFileInfo::new(&training_data, TeaclaveFile128Key::random(), FileAuthTag::mock()),
        ));

        let output_files = StagedFiles::new(hashmap!(
            OUT_MODEL_FILE =>
            StagedFileInfo::new(&plain_output, TeaclaveFile128Key::random(), FileAuthTag::mock())
        ));

        let runtime = Box::new(RawIoRuntime::new(input_files, output_files));

        let summary = LogisticRegressionTrain::new()
            .run(arguments, runtime)
            .unwrap();
        assert_eq!(summary, "Trained 100 lines of data.");

        let result = fs::read_to_string(&plain_output).unwrap();
        let expected = fs::read_to_string(&expected_output).unwrap();
        assert_eq!(&result[..], &expected[..]);
    }
}