1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
//! Linear Regression module
//!
//! Contains implemention of linear regression using
//! OLS and gradient descent optimization.
//!
//! The regressor will automatically add the intercept term
//! so you do not need to format the input matrices yourself.
//!
//! # Usage
//!
//! ```
//! use rusty_machine::learning::lin_reg::LinRegressor;
//! use rusty_machine::learning::SupModel;
//! use rusty_machine::linalg::Matrix;
//! use rusty_machine::linalg::Vector;
//!
//! let inputs = Matrix::new(4,1,vec![1.0,3.0,5.0,7.0]);
//! let targets = Vector::new(vec![1.,5.,9.,13.]);
//!
//! let mut lin_mod = LinRegressor::default();
//!
//! // Train the model
//! lin_mod.train(&inputs, &targets).unwrap();
//!
//! // Now we'll predict a new point
//! let new_point = Matrix::new(1,1,vec![10.]);
//! let output = lin_mod.predict(&new_point).unwrap();
//!
//! // Hopefully we classified our new point correctly!
//! assert!(output[0] > 17f64, "Our regressor isn't very good!");
//! ```

use linalg::{Matrix, BaseMatrix};
use linalg::Vector;
use learning::{LearningResult, SupModel};
use learning::toolkit::cost_fn::CostFunc;
use learning::toolkit::cost_fn::MeanSqError;
use learning::optim::grad_desc::GradientDesc;
use learning::optim::{OptimAlgorithm, Optimizable};
use learning::error::Error;

/// Linear Regression Model.
///
/// Contains option for optimized parameter.
#[derive(Debug)]
pub struct LinRegressor {
    /// The parameters for the regression model.
    parameters: Option<Vector<f64>>,
}

impl Default for LinRegressor {
    fn default() -> LinRegressor {
        LinRegressor { parameters: None }
    }
}

impl LinRegressor {
    /// Get the parameters from the model.
    ///
    /// Returns an option that is None if the model has not been trained.
    pub fn parameters(&self) -> Option<&Vector<f64>> {
        self.parameters.as_ref()
    }
}

impl SupModel<Matrix<f64>, Vector<f64>> for LinRegressor {
    /// Train the linear regression model.
    ///
    /// Takes training data and output values as input.
    ///
    /// # Examples
    ///
    /// ```
    /// use rusty_machine::learning::lin_reg::LinRegressor;
    /// use rusty_machine::linalg::Matrix;
    /// use rusty_machine::linalg::Vector;
    /// use rusty_machine::learning::SupModel;
    ///
    /// let mut lin_mod = LinRegressor::default();
    /// let inputs = Matrix::new(3,1, vec![2.0, 3.0, 4.0]);
    /// let targets = Vector::new(vec![5.0, 6.0, 7.0]);
    ///
    /// lin_mod.train(&inputs, &targets).unwrap();
    /// ```
    fn train(&mut self, inputs: &Matrix<f64>, targets: &Vector<f64>) -> LearningResult<()> {
        let ones = Matrix::<f64>::ones(inputs.rows(), 1);
        let full_inputs = ones.hcat(inputs);

        let xt = full_inputs.transpose();
        self.parameters = Some((&xt * full_inputs).solve(&xt * targets)?);
        Ok(())
    }

    /// Predict output value from input data.
    ///
    /// Model must be trained before prediction can be made.
    fn predict(&self, inputs: &Matrix<f64>) -> LearningResult<Vector<f64>> {
        if let Some(ref v) = self.parameters {
            let ones = Matrix::<f64>::ones(inputs.rows(), 1);
            let full_inputs = ones.hcat(inputs);
            Ok(full_inputs * v)
        } else {
            Err(Error::new_untrained())
        }
    }
}

impl Optimizable for LinRegressor {
    type Inputs = Matrix<f64>;
    type Targets = Vector<f64>;

    fn compute_grad(&self,
                    params: &[f64],
                    inputs: &Matrix<f64>,
                    targets: &Vector<f64>)
                    -> (f64, Vec<f64>) {

        let beta_vec = Vector::new(params.to_vec());
        let outputs = inputs * beta_vec;

        let cost = MeanSqError::cost(&outputs, targets);
        let grad = (inputs.transpose() * (outputs - targets)) / (inputs.rows() as f64);

        (cost, grad.into_vec())
    }
}

impl LinRegressor {
    /// Train the linear regressor using Gradient Descent.
    ///
    /// # Examples
    ///
    /// ```
    /// use rusty_machine::learning::lin_reg::LinRegressor;
    /// use rusty_machine::learning::SupModel;
    /// use rusty_machine::linalg::Matrix;
    /// use rusty_machine::linalg::Vector;
    ///
    /// let inputs = Matrix::new(4,1,vec![1.0,3.0,5.0,7.0]);
    /// let targets = Vector::new(vec![1.,5.,9.,13.]);
    ///
    /// let mut lin_mod = LinRegressor::default();
    ///
    /// // Train the model
    /// lin_mod.train_with_optimization(&inputs, &targets);
    ///
    /// // Now we'll predict a new point
    /// let new_point = Matrix::new(1,1,vec![10.]);
    /// let _ = lin_mod.predict(&new_point).unwrap();
    /// ```
    pub fn train_with_optimization(&mut self, inputs: &Matrix<f64>, targets: &Vector<f64>) {
        let ones = Matrix::<f64>::ones(inputs.rows(), 1);
        let full_inputs = ones.hcat(inputs);

        let initial_params = vec![0.; full_inputs.cols()];

        let gd = GradientDesc::default();
        let optimal_w = gd.optimize(self, &initial_params[..], &full_inputs, targets);
        self.parameters = Some(Vector::new(optimal_w));
    }
}