1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License..
//! Generating numbers between two others.
// this is surprisingly complicated to be both generic & correct
use std::num::Wrapping as w;
use crate::distributions::{IndependentSample, Sample};
use crate::Rng;
#[allow(clippy::needless_doctest_main)]
/// Sample values uniformly between two bounds.
///
/// This gives a uniform distribution (assuming the RNG used to sample
/// it is itself uniform & the `SampleRange` implementation for the
/// given type is correct), even for edge cases like `low = 0u8`,
/// `high = 170u8`, for which a naive modulo operation would return
/// numbers less than 85 with double the probability to those greater
/// than 85.
///
/// Types should attempt to sample in `[low, high)`, i.e., not
/// including `high`, but this may be very difficult. All the
/// primitive integer types satisfy this property, and the float types
/// normally satisfy it, but rounding may mean `high` can occur.
///
/// # Example
///
/// ```rust
/// use sgx_rand::distributions::{IndependentSample, Range};
///
/// fn main() {
/// let between = Range::new(10, 10000);
/// let mut rng = sgx_rand::thread_rng();
/// let mut sum = 0;
/// for _ in 0..1000 {
/// sum += between.ind_sample(&mut rng);
/// }
/// println!("{}", sum);
/// }
/// ```
#[derive(Clone, Copy, Debug)]
pub struct Range<X> {
low: X,
range: X,
accept_zone: X,
}
impl<X: SampleRange + PartialOrd> Range<X> {
/// Create a new `Range` instance that samples uniformly from
/// `[low, high)`. Panics if `low >= high`.
pub fn new(low: X, high: X) -> Range<X> {
assert!(low < high, "Range::new called with `low >= high`");
SampleRange::construct_range(low, high)
}
}
impl<Sup: SampleRange> Sample<Sup> for Range<Sup> {
#[inline]
fn sample<R: Rng>(&mut self, rng: &mut R) -> Sup {
self.ind_sample(rng)
}
}
impl<Sup: SampleRange> IndependentSample<Sup> for Range<Sup> {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> Sup {
SampleRange::sample_range(self, rng)
}
}
/// The helper trait for types that have a sensible way to sample
/// uniformly between two values. This should not be used directly,
/// and is only to facilitate `Range`.
pub trait SampleRange: Sized {
/// Construct the `Range` object that `sample_range`
/// requires. This should not ever be called directly, only via
/// `Range::new`, which will check that `low < high`, so this
/// function doesn't have to repeat the check.
fn construct_range(low: Self, high: Self) -> Range<Self>;
/// Sample a value from the given `Range` with the given `Rng` as
/// a source of randomness.
fn sample_range<R: Rng>(r: &Range<Self>, rng: &mut R) -> Self;
}
macro_rules! integer_impl {
($ty:ty, $unsigned:ident) => {
impl SampleRange for $ty {
// we play free and fast with unsigned vs signed here
// (when $ty is signed), but that's fine, since the
// contract of this macro is for $ty and $unsigned to be
// "bit-equal", so casting between them is a no-op & a
// bijection.
#[inline]
fn construct_range(low: $ty, high: $ty) -> Range<$ty> {
let range = (w(high as $unsigned) - w(low as $unsigned)).0;
let unsigned_max: $unsigned = ::std::$unsigned::MAX;
// this is the largest number that fits into $unsigned
// that `range` divides evenly, so, if we've sampled
// `n` uniformly from this region, then `n % range` is
// uniform in [0, range)
let zone = unsigned_max - unsigned_max % range;
Range {
low,
range: range as $ty,
accept_zone: zone as $ty,
}
}
#[inline]
fn sample_range<R: Rng>(r: &Range<$ty>, rng: &mut R) -> $ty {
loop {
// rejection sample
let v = rng.gen::<$unsigned>();
// until we find something that fits into the
// region which r.range evenly divides (this will
// be uniformly distributed)
if v < r.accept_zone as $unsigned {
// and return it, with some adjustments
return (w(r.low) + w((v % r.range as $unsigned) as $ty)).0;
}
}
}
}
};
}
integer_impl! { i8, u8 }
integer_impl! { i16, u16 }
integer_impl! { i32, u32 }
integer_impl! { i64, u64 }
integer_impl! { isize, usize }
integer_impl! { u8, u8 }
integer_impl! { u16, u16 }
integer_impl! { u32, u32 }
integer_impl! { u64, u64 }
integer_impl! { usize, usize }
macro_rules! float_impl {
($ty:ty) => {
impl SampleRange for $ty {
fn construct_range(low: $ty, high: $ty) -> Range<$ty> {
Range {
low,
range: high - low,
accept_zone: 0.0, // unused
}
}
fn sample_range<R: Rng>(r: &Range<$ty>, rng: &mut R) -> $ty {
r.low + r.range * rng.gen::<$ty>()
}
}
};
}
float_impl! { f32 }
float_impl! { f64 }