1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
use std::ffi::OsStr;
#[cfg(not(any(target_os = "windows", target_arch = "wasm32")))]
use std::os::unix::ffi::OsStrExt;
#[cfg(any(target_os = "windows", target_arch = "wasm32"))]
use crate::INVALID_UTF8;

#[cfg(any(target_os = "windows", target_arch = "wasm32"))]
pub trait OsStrExt3 {
    fn from_bytes(b: &[u8]) -> &Self;
    fn as_bytes(&self) -> &[u8];
}

#[doc(hidden)]
pub trait OsStrExt2 {
    fn starts_with(&self, s: &[u8]) -> bool;
    fn split_at_byte(&self, b: u8) -> (&OsStr, &OsStr);
    fn split_at(&self, i: usize) -> (&OsStr, &OsStr);
    fn trim_left_matches(&self, b: u8) -> &OsStr;
    fn contains_byte(&self, b: u8) -> bool;
    fn split(&self, b: u8) -> OsSplit;
}

// A starts-with implementation that does not panic when the OsStr contains
// invalid Unicode.
//
// A Windows OsStr is usually UTF-16. If `prefix` is valid UTF-8, we can
// re-encode it as UTF-16, and ask whether `osstr` starts with the same series
// of u16 code units. If `prefix` is not valid UTF-8, then this comparison
// isn't meaningful, and we just return false.
#[cfg(target_os = "windows")]
fn windows_osstr_starts_with(osstr: &OsStr, prefix: &[u8]) -> bool {
    use std::os::windows::ffi::OsStrExt;
    let prefix_str = if let Ok(s) = std::str::from_utf8(prefix) {
        s
    } else {
        return false;
    };
    let mut osstr_units = osstr.encode_wide();
    let mut prefix_units = prefix_str.encode_utf16();
    loop {
        match (osstr_units.next(), prefix_units.next()) {
            // These code units match. Keep looping.
            (Some(o), Some(p)) if o == p => continue,
            // We've reached the end of the prefix. It's a match.
            (_, None) => return true,
            // Otherwise, it's not a match.
            _ => return false,
        }
    }
}

#[test]
#[cfg(target_os = "windows")]
fn test_windows_osstr_starts_with() {
    use std::ffi::OsString;
    use std::os::windows::ffi::OsStringExt;

    fn from_ascii(ascii: &[u8]) -> OsString {
        let u16_vec: Vec<u16> = ascii.iter().map(|&c| c as u16).collect();
        OsString::from_wide(&u16_vec)
    }

    // Test all the basic cases.
    assert!(windows_osstr_starts_with(&from_ascii(b"abcdef"), b"abc"));
    assert!(windows_osstr_starts_with(&from_ascii(b"abcdef"), b"abcdef"));
    assert!(!windows_osstr_starts_with(&from_ascii(b"abcdef"), b"def"));
    assert!(!windows_osstr_starts_with(&from_ascii(b"abc"), b"abcd"));

    // Test the case where the candidate prefix is not valid UTF-8. Note that a
    // standalone \xff byte is valid ASCII but not valid UTF-8. Thus although
    // these strings look identical, they do not match.
    assert!(!windows_osstr_starts_with(&from_ascii(b"\xff"), b"\xff"));

    // Test the case where the OsString is not valid UTF-16. It should still be
    // possible to match the valid characters at the front.
    //
    // UTF-16 surrogate characters are only valid in pairs. Including one on
    // the end by itself makes this invalid UTF-16.
    let surrogate_char: u16 = 0xDC00;
    let invalid_unicode =
        OsString::from_wide(&['a' as u16, 'b' as u16, 'c' as u16, surrogate_char]);
    assert!(
        invalid_unicode.to_str().is_none(),
        "This string is invalid Unicode, and conversion to &str should fail.",
    );
    assert!(windows_osstr_starts_with(&invalid_unicode, b"abc"));
    assert!(!windows_osstr_starts_with(&invalid_unicode, b"abcd"));
}

#[cfg(any(target_os = "windows", target_arch = "wasm32"))]
impl OsStrExt3 for OsStr {
    fn from_bytes(b: &[u8]) -> &Self {
        use std::mem;
        unsafe { mem::transmute(b) }
    }
    fn as_bytes(&self) -> &[u8] {
        self.to_str().map(|s| s.as_bytes()).expect(INVALID_UTF8)
    }
}

impl OsStrExt2 for OsStr {
    fn starts_with(&self, s: &[u8]) -> bool {
        #[cfg(target_os = "windows")]
        {
            // On Windows, the as_bytes() method will panic if the OsStr
            // contains invalid Unicode. To avoid this, we use a
            // Windows-specific starts-with function that doesn't rely on
            // as_bytes(). This is necessary for Windows command line
            // applications to handle non-Unicode arguments successfully. This
            // allows common cases like `clap.exe [invalid]` to succeed, though
            // cases that require string splitting will still fail, like
            // `clap.exe --arg=[invalid]`. Note that this entire module is
            // replaced in Clap 3.x, so this workaround is specific to the 2.x
            // branch.
            windows_osstr_starts_with(self, s)
        }
        #[cfg(not(target_os = "windows"))]
        {
            self.as_bytes().starts_with(s)
        }
    }

    fn contains_byte(&self, byte: u8) -> bool {
        for b in self.as_bytes() {
            if b == &byte {
                return true;
            }
        }
        false
    }

    fn split_at_byte(&self, byte: u8) -> (&OsStr, &OsStr) {
        for (i, b) in self.as_bytes().iter().enumerate() {
            if b == &byte {
                return (
                    OsStr::from_bytes(&self.as_bytes()[..i]),
                    OsStr::from_bytes(&self.as_bytes()[i + 1..]),
                );
            }
        }
        (
            &*self,
            OsStr::from_bytes(&self.as_bytes()[self.len()..self.len()]),
        )
    }

    fn trim_left_matches(&self, byte: u8) -> &OsStr {
        let mut found = false;
        for (i, b) in self.as_bytes().iter().enumerate() {
            if b != &byte {
                return OsStr::from_bytes(&self.as_bytes()[i..]);
            } else {
                found = true;
            }
        }
        if found {
            return OsStr::from_bytes(&self.as_bytes()[self.len()..]);
        }
        &*self
    }

    fn split_at(&self, i: usize) -> (&OsStr, &OsStr) {
        (
            OsStr::from_bytes(&self.as_bytes()[..i]),
            OsStr::from_bytes(&self.as_bytes()[i..]),
        )
    }

    fn split(&self, b: u8) -> OsSplit {
        OsSplit {
            sep: b,
            val: self.as_bytes(),
            pos: 0,
        }
    }
}

#[doc(hidden)]
#[derive(Clone, Debug)]
pub struct OsSplit<'a> {
    sep: u8,
    val: &'a [u8],
    pos: usize,
}

impl<'a> Iterator for OsSplit<'a> {
    type Item = &'a OsStr;

    fn next(&mut self) -> Option<&'a OsStr> {
        debugln!("OsSplit::next: self={:?}", self);
        if self.pos == self.val.len() {
            return None;
        }
        let start = self.pos;
        for b in &self.val[start..] {
            self.pos += 1;
            if *b == self.sep {
                return Some(OsStr::from_bytes(&self.val[start..self.pos - 1]));
            }
        }
        Some(OsStr::from_bytes(&self.val[start..]))
    }
}