1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
/*!
Provides literal extraction from `Hir` expressions.

An [`Extractor`] pulls literals out of [`Hir`] expressions and returns a
[`Seq`] of [`Literal`]s.

The purpose of literal extraction is generally to provide avenues for
optimizing regex searches. The main idea is that substring searches can be an
order of magnitude faster than a regex search. Therefore, if one can execute
a substring search to find candidate match locations and only run the regex
search at those locations, then it is possible for huge improvements in
performance to be realized.

With that said, literal optimizations are generally a black art because even
though substring search is generally faster, if the number of candidates
produced is high, then it can create a lot of overhead by ping-ponging between
the substring search and the regex search.

Here are some heuristics that might be used to help increase the chances of
effective literal optimizations:

* Stick to small [`Seq`]s. If you search for too many literals, it's likely
to lead to substring search that is only a little faster than a regex search,
and thus the overhead of using literal optimizations in the first place might
make things slower overall.
* The literals in your [`Seq`] shoudn't be too short. In general, longer is
better. A sequence corresponding to single bytes that occur frequently in the
haystack, for example, is probably a bad literal optimization because it's
likely to produce many false positive candidates. Longer literals are less
likely to match, and thus probably produce fewer false positives.
* If it's possible to estimate the approximate frequency of each byte according
to some pre-computed background distribution, it is possible to compute a score
of how "good" a `Seq` is. If a `Seq` isn't good enough, you might consider
skipping the literal optimization and just use the regex engine.

(It should be noted that there are always pathological cases that can make
any kind of literal optimization be a net slower result. This is why it
might be a good idea to be conservative, or to even provide a means for
literal optimizations to be dynamically disabled if they are determined to be
ineffective according to some measure.)

You're encouraged to explore the methods on [`Seq`], which permit shrinking
the size of sequences in a preference-order preserving fashion.

Finally, note that it isn't strictly necessary to use an [`Extractor`]. Namely,
an `Extractor` only uses public APIs of the [`Seq`] and [`Literal`] types,
so it is possible to implement your own extractor. For example, for n-grams
or "inner" literals (i.e., not prefix or suffix literals). The `Extractor`
is mostly responsible for the case analysis over `Hir` expressions. Much of
the "trickier" parts are how to combine literal sequences, and that is all
implemented on [`Seq`].
*/

use core::{cmp, mem};

use alloc::{vec, vec::Vec};

use crate::hir::{self, Hir};

/// Extracts prefix or suffix literal sequences from [`Hir`] expressions.
///
/// Literal extraction is based on the following observations:
///
/// * Many regexes start with one or a small number of literals.
/// * Substring search for literals is often much faster (sometimes by an order
/// of magnitude) than a regex search.
///
/// Thus, in many cases, one can search for literals to find candidate starting
/// locations of a match, and then only run the full regex engine at each such
/// location instead of over the full haystack.
///
/// The main downside of literal extraction is that it can wind up causing a
/// search to be slower overall. For example, if there are many matches or if
/// there are many candidates that don't ultimately lead to a match, then a
/// lot of overhead will be spent in shuffing back-and-forth between substring
/// search and the regex engine. This is the fundamental reason why literal
/// optimizations for regex patterns is sometimes considered a "black art."
///
/// # Look-around assertions
///
/// Literal extraction treats all look-around assertions as-if they match every
/// empty string. So for example, the regex `\bquux\b` will yield a sequence
/// containing a single exact literal `quux`. However, not all occurrences
/// of `quux` correspond to a match a of the regex. For example, `\bquux\b`
/// does not match `ZquuxZ` anywhere because `quux` does not fall on a word
/// boundary.
///
/// In effect, if your regex contains look-around assertions, then a match of
/// an exact literal does not necessarily mean the regex overall matches. So
/// you may still need to run the regex engine in such cases to confirm the
/// match.
///
/// The precise guarantee you get from a literal sequence is: if every literal
/// in the sequence is exact and the original regex contains zero look-around
/// assertions, then a preference-order multi-substring search of those
/// literals will precisely match a preference-order search of the original
/// regex.
///
/// # Example
///
/// This shows how to extract prefixes:
///
/// ```
/// use regex_syntax::{hir::literal::{Extractor, Literal, Seq}, parse};
///
/// let hir = parse(r"(a|b|c)(x|y|z)[A-Z]+foo")?;
/// let got = Extractor::new().extract(&hir);
/// // All literals returned are "inexact" because none of them reach the
/// // match state.
/// let expected = Seq::from_iter([
///     Literal::inexact("ax"),
///     Literal::inexact("ay"),
///     Literal::inexact("az"),
///     Literal::inexact("bx"),
///     Literal::inexact("by"),
///     Literal::inexact("bz"),
///     Literal::inexact("cx"),
///     Literal::inexact("cy"),
///     Literal::inexact("cz"),
/// ]);
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// This shows how to extract suffixes:
///
/// ```
/// use regex_syntax::{
///     hir::literal::{Extractor, ExtractKind, Literal, Seq},
///     parse,
/// };
///
/// let hir = parse(r"foo|[A-Z]+bar")?;
/// let got = Extractor::new().kind(ExtractKind::Suffix).extract(&hir);
/// // Since 'foo' gets to a match state, it is considered exact. But 'bar'
/// // does not because of the '[A-Z]+', and thus is marked inexact.
/// let expected = Seq::from_iter([
///     Literal::exact("foo"),
///     Literal::inexact("bar"),
/// ]);
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct Extractor {
    kind: ExtractKind,
    limit_class: usize,
    limit_repeat: usize,
    limit_literal_len: usize,
    limit_total: usize,
}

impl Extractor {
    /// Create a new extractor with a default configuration.
    ///
    /// The extractor can be optionally configured before calling
    /// [`Extractor::extract`] to get a literal sequence.
    pub fn new() -> Extractor {
        Extractor {
            kind: ExtractKind::Prefix,
            limit_class: 10,
            limit_repeat: 10,
            limit_literal_len: 100,
            limit_total: 250,
        }
    }

    /// Execute the extractor and return a sequence of literals.
    pub fn extract(&self, hir: &Hir) -> Seq {
        use crate::hir::HirKind::*;

        match *hir.kind() {
            Empty | Look(_) => Seq::singleton(self::Literal::exact(vec![])),
            Literal(hir::Literal(ref bytes)) => {
                let mut seq =
                    Seq::singleton(self::Literal::exact(bytes.to_vec()));
                self.enforce_literal_len(&mut seq);
                seq
            }
            Class(hir::Class::Unicode(ref cls)) => {
                self.extract_class_unicode(cls)
            }
            Class(hir::Class::Bytes(ref cls)) => self.extract_class_bytes(cls),
            Repetition(ref rep) => self.extract_repetition(rep),
            Capture(hir::Capture { ref sub, .. }) => self.extract(sub),
            Concat(ref hirs) => match self.kind {
                ExtractKind::Prefix => self.extract_concat(hirs.iter()),
                ExtractKind::Suffix => self.extract_concat(hirs.iter().rev()),
            },
            Alternation(ref hirs) => {
                // Unlike concat, we always union starting from the beginning,
                // since the beginning corresponds to the highest preference,
                // which doesn't change based on forwards vs reverse.
                self.extract_alternation(hirs.iter())
            }
        }
    }

    /// Set the kind of literal sequence to extract from an [`Hir`] expression.
    ///
    /// The default is to extract prefixes, but suffixes can be selected
    /// instead. The contract for prefixes is that every match of the
    /// corresponding `Hir` must start with one of the literals in the sequence
    /// returned. Moreover, the _order_ of the sequence returned corresponds to
    /// the preference order.
    ///
    /// Suffixes satisfy a similar contract in that every match of the
    /// corresponding `Hir` must end with one of the literals in the sequence
    /// returned. However, there is no guarantee that the literals are in
    /// preference order.
    ///
    /// Remember that a sequence can be infinite. For example, unless the
    /// limits are configured to be impractically large, attempting to extract
    /// prefixes (or suffixes) for the pattern `[A-Z]` will return an infinite
    /// sequence. Generally speaking, if the sequence returned is infinite,
    /// then it is presumed to be unwise to do prefix (or suffix) optimizations
    /// for the pattern.
    pub fn kind(&mut self, kind: ExtractKind) -> &mut Extractor {
        self.kind = kind;
        self
    }

    /// Configure a limit on the length of the sequence that is permitted for
    /// a character class. If a character class exceeds this limit, then the
    /// sequence returned for it is infinite.
    ///
    /// This prevents classes like `[A-Z]` or `\pL` from getting turned into
    /// huge and likely unproductive sequences of literals.
    ///
    /// # Example
    ///
    /// This example shows how this limit can be lowered to decrease the tolerance
    /// for character classes being turned into literal sequences.
    ///
    /// ```
    /// use regex_syntax::{hir::literal::{Extractor, Seq}, parse};
    ///
    /// let hir = parse(r"[0-9]")?;
    ///
    /// let got = Extractor::new().extract(&hir);
    /// let expected = Seq::new([
    ///     "0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
    /// ]);
    /// assert_eq!(expected, got);
    ///
    /// // Now let's shrink the limit and see how that changes things.
    /// let got = Extractor::new().limit_class(4).extract(&hir);
    /// let expected = Seq::infinite();
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn limit_class(&mut self, limit: usize) -> &mut Extractor {
        self.limit_class = limit;
        self
    }

    /// Configure a limit on the total number of repetitions that is permitted
    /// before literal extraction is stopped.
    ///
    /// This is useful for limiting things like `(abcde){50}`, or more
    /// insidiously, `(?:){1000000000}`. This limit prevents any one single
    /// repetition from adding too much to a literal sequence.
    ///
    /// With this limit set, repetitions that exceed it will be stopped and any
    /// literals extracted up to that point will be made inexact.
    ///
    /// # Example
    ///
    /// This shows how to decrease the limit and compares it with the default.
    ///
    /// ```
    /// use regex_syntax::{hir::literal::{Extractor, Literal, Seq}, parse};
    ///
    /// let hir = parse(r"(abc){8}")?;
    ///
    /// let got = Extractor::new().extract(&hir);
    /// let expected = Seq::new(["abcabcabcabcabcabcabcabc"]);
    /// assert_eq!(expected, got);
    ///
    /// // Now let's shrink the limit and see how that changes things.
    /// let got = Extractor::new().limit_repeat(4).extract(&hir);
    /// let expected = Seq::from_iter([
    ///     Literal::inexact("abcabcabcabc"),
    /// ]);
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn limit_repeat(&mut self, limit: usize) -> &mut Extractor {
        self.limit_repeat = limit;
        self
    }

    /// Configure a limit on the maximum length of any literal in a sequence.
    ///
    /// This is useful for limiting things like `(abcde){5}{5}{5}{5}`. While
    /// each repetition or literal in that regex is small, when all the
    /// repetitions are applied, one ends up with a literal of length `5^4 =
    /// 625`.
    ///
    /// With this limit set, literals that exceed it will be made inexact and
    /// thus prevented from growing.
    ///
    /// # Example
    ///
    /// This shows how to decrease the limit and compares it with the default.
    ///
    /// ```
    /// use regex_syntax::{hir::literal::{Extractor, Literal, Seq}, parse};
    ///
    /// let hir = parse(r"(abc){2}{2}{2}")?;
    ///
    /// let got = Extractor::new().extract(&hir);
    /// let expected = Seq::new(["abcabcabcabcabcabcabcabc"]);
    /// assert_eq!(expected, got);
    ///
    /// // Now let's shrink the limit and see how that changes things.
    /// let got = Extractor::new().limit_literal_len(14).extract(&hir);
    /// let expected = Seq::from_iter([
    ///     Literal::inexact("abcabcabcabcab"),
    /// ]);
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn limit_literal_len(&mut self, limit: usize) -> &mut Extractor {
        self.limit_literal_len = limit;
        self
    }

    /// Configure a limit on the total number of literals that will be
    /// returned.
    ///
    /// This is useful as a practical measure for avoiding the creation of
    /// large sequences of literals. While the extractor will automatically
    /// handle local creations of large sequences (for example, `[A-Z]` yields
    /// an infinite sequence by default), large sequences can be created
    /// through non-local means as well.
    ///
    /// For example, `[ab]{3}{3}` would yield a sequence of length `512 = 2^9`
    /// despite each of the repetitions being small on their own. This limit
    /// thus represents a "catch all" for avoiding locally small sequences from
    /// combining into large sequences.
    ///
    /// # Example
    ///
    /// This example shows how reducing the limit will change the literal
    /// sequence returned.
    ///
    /// ```
    /// use regex_syntax::{hir::literal::{Extractor, Literal, Seq}, parse};
    ///
    /// let hir = parse(r"[ab]{2}{2}")?;
    ///
    /// let got = Extractor::new().extract(&hir);
    /// let expected = Seq::new([
    ///     "aaaa", "aaab", "aaba", "aabb",
    ///     "abaa", "abab", "abba", "abbb",
    ///     "baaa", "baab", "baba", "babb",
    ///     "bbaa", "bbab", "bbba", "bbbb",
    /// ]);
    /// assert_eq!(expected, got);
    ///
    /// // The default limit is not too big, but big enough to extract all
    /// // literals from '[ab]{2}{2}'. If we shrink the limit to less than 16,
    /// // then we'll get a truncated set. Notice that it returns a sequence of
    /// // length 4 even though our limit was 10. This is because the sequence
    /// // is difficult to increase without blowing the limit. Notice also
    /// // that every literal in the sequence is now inexact because they were
    /// // stripped of some suffix.
    /// let got = Extractor::new().limit_total(10).extract(&hir);
    /// let expected = Seq::from_iter([
    ///     Literal::inexact("aa"),
    ///     Literal::inexact("ab"),
    ///     Literal::inexact("ba"),
    ///     Literal::inexact("bb"),
    /// ]);
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn limit_total(&mut self, limit: usize) -> &mut Extractor {
        self.limit_total = limit;
        self
    }

    /// Extract a sequence from the given concatenation. Sequences from each of
    /// the child HIR expressions are combined via cross product.
    ///
    /// This short circuits once the cross product turns into a sequence
    /// containing only inexact literals.
    fn extract_concat<'a, I: Iterator<Item = &'a Hir>>(&self, it: I) -> Seq {
        let mut seq = Seq::singleton(self::Literal::exact(vec![]));
        for hir in it {
            // If every element in the sequence is inexact, then a cross
            // product will always be a no-op. Thus, there is nothing else we
            // can add to it and can quit early. Note that this also includes
            // infinite sequences.
            if seq.is_inexact() {
                break;
            }
            // Note that 'cross' also dispatches based on whether we're
            // extracting prefixes or suffixes.
            seq = self.cross(seq, &mut self.extract(hir));
        }
        seq
    }

    /// Extract a sequence from the given alternation.
    ///
    /// This short circuits once the union turns into an infinite sequence.
    fn extract_alternation<'a, I: Iterator<Item = &'a Hir>>(
        &self,
        it: I,
    ) -> Seq {
        let mut seq = Seq::empty();
        for hir in it {
            // Once our 'seq' is infinite, every subsequent union
            // operation on it will itself always result in an
            // infinite sequence. Thus, it can never change and we can
            // short-circuit.
            if !seq.is_finite() {
                break;
            }
            seq = self.union(seq, &mut self.extract(hir));
        }
        seq
    }

    /// Extract a sequence of literals from the given repetition. We do our
    /// best, Some examples:
    ///
    ///   'a*'    => [inexact(a), exact("")]
    ///   'a*?'   => [exact(""), inexact(a)]
    ///   'a+'    => [inexact(a)]
    ///   'a{3}'  => [exact(aaa)]
    ///   'a{3,5} => [inexact(aaa)]
    ///
    /// The key here really is making sure we get the 'inexact' vs 'exact'
    /// attributes correct on each of the literals we add. For example, the
    /// fact that 'a*' gives us an inexact 'a' and an exact empty string means
    /// that a regex like 'ab*c' will result in [inexact(ab), exact(ac)]
    /// literals being extracted, which might actually be a better prefilter
    /// than just 'a'.
    fn extract_repetition(&self, rep: &hir::Repetition) -> Seq {
        let mut subseq = self.extract(&rep.sub);
        match *rep {
            hir::Repetition { min: 0, max, greedy, .. } => {
                // When 'max=1', we can retain exactness, since 'a?' is
                // equivalent to 'a|'. Similarly below, 'a??' is equivalent to
                // '|a'.
                if max != Some(1) {
                    subseq.make_inexact();
                }
                let mut empty = Seq::singleton(Literal::exact(vec![]));
                if !greedy {
                    mem::swap(&mut subseq, &mut empty);
                }
                self.union(subseq, &mut empty)
            }
            hir::Repetition { min, max: Some(max), .. } if min == max => {
                assert!(min > 0); // handled above
                let limit =
                    u32::try_from(self.limit_repeat).unwrap_or(u32::MAX);
                let mut seq = Seq::singleton(Literal::exact(vec![]));
                for _ in 0..cmp::min(min, limit) {
                    if seq.is_inexact() {
                        break;
                    }
                    seq = self.cross(seq, &mut subseq.clone());
                }
                if usize::try_from(min).is_err() || min > limit {
                    seq.make_inexact();
                }
                seq
            }
            hir::Repetition { min, max: Some(max), .. } if min < max => {
                assert!(min > 0); // handled above
                let limit =
                    u32::try_from(self.limit_repeat).unwrap_or(u32::MAX);
                let mut seq = Seq::singleton(Literal::exact(vec![]));
                for _ in 0..cmp::min(min, limit) {
                    if seq.is_inexact() {
                        break;
                    }
                    seq = self.cross(seq, &mut subseq.clone());
                }
                seq.make_inexact();
                seq
            }
            hir::Repetition { .. } => {
                subseq.make_inexact();
                subseq
            }
        }
    }

    /// Convert the given Unicode class into a sequence of literals if the
    /// class is small enough. If the class is too big, return an infinite
    /// sequence.
    fn extract_class_unicode(&self, cls: &hir::ClassUnicode) -> Seq {
        if self.class_over_limit_unicode(cls) {
            return Seq::infinite();
        }
        let mut seq = Seq::empty();
        for r in cls.iter() {
            for ch in r.start()..=r.end() {
                seq.push(Literal::from(ch));
            }
        }
        self.enforce_literal_len(&mut seq);
        seq
    }

    /// Convert the given byte class into a sequence of literals if the class
    /// is small enough. If the class is too big, return an infinite sequence.
    fn extract_class_bytes(&self, cls: &hir::ClassBytes) -> Seq {
        if self.class_over_limit_bytes(cls) {
            return Seq::infinite();
        }
        let mut seq = Seq::empty();
        for r in cls.iter() {
            for b in r.start()..=r.end() {
                seq.push(Literal::from(b));
            }
        }
        self.enforce_literal_len(&mut seq);
        seq
    }

    /// Returns true if the given Unicode class exceeds the configured limits
    /// on this extractor.
    fn class_over_limit_unicode(&self, cls: &hir::ClassUnicode) -> bool {
        let mut count = 0;
        for r in cls.iter() {
            if count > self.limit_class {
                return true;
            }
            count += r.len();
        }
        count > self.limit_class
    }

    /// Returns true if the given byte class exceeds the configured limits on
    /// this extractor.
    fn class_over_limit_bytes(&self, cls: &hir::ClassBytes) -> bool {
        let mut count = 0;
        for r in cls.iter() {
            if count > self.limit_class {
                return true;
            }
            count += r.len();
        }
        count > self.limit_class
    }

    /// Compute the cross product of the two sequences if the result would be
    /// within configured limits. Otherwise, make `seq2` infinite and cross the
    /// infinite sequence with `seq1`.
    fn cross(&self, mut seq1: Seq, seq2: &mut Seq) -> Seq {
        if seq1.max_cross_len(seq2).map_or(false, |len| len > self.limit_total)
        {
            seq2.make_infinite();
        }
        if let ExtractKind::Suffix = self.kind {
            seq1.cross_reverse(seq2);
        } else {
            seq1.cross_forward(seq2);
        }
        assert!(seq1.len().map_or(true, |x| x <= self.limit_total));
        self.enforce_literal_len(&mut seq1);
        seq1
    }

    /// Union the two sequences if the result would be within configured
    /// limits. Otherwise, make `seq2` infinite and union the infinite sequence
    /// with `seq1`.
    fn union(&self, mut seq1: Seq, seq2: &mut Seq) -> Seq {
        if seq1.max_union_len(seq2).map_or(false, |len| len > self.limit_total)
        {
            // We try to trim our literal sequences to see if we can make
            // room for more literals. The idea is that we'd rather trim down
            // literals already in our sequence if it means we can add a few
            // more and retain a finite sequence. Otherwise, we'll union with
            // an infinite sequence and that infects everything and effectively
            // stops literal extraction in its tracks.
            //
            // We do we keep 4 bytes here? Well, it's a bit of an abstraction
            // leakage. Downstream, the literals may wind up getting fed to
            // the Teddy algorithm, which supports searching literals up to
            // length 4. So that's why we pick that number here. Arguably this
            // should be a tuneable parameter, but it seems a little tricky to
            // describe. And I'm still unsure if this is the right way to go
            // about culling literal sequences.
            match self.kind {
                ExtractKind::Prefix => {
                    seq1.keep_first_bytes(4);
                    seq2.keep_first_bytes(4);
                }
                ExtractKind::Suffix => {
                    seq1.keep_last_bytes(4);
                    seq2.keep_last_bytes(4);
                }
            }
            seq1.dedup();
            seq2.dedup();
            if seq1
                .max_union_len(seq2)
                .map_or(false, |len| len > self.limit_total)
            {
                seq2.make_infinite();
            }
        }
        seq1.union(seq2);
        assert!(seq1.len().map_or(true, |x| x <= self.limit_total));
        seq1
    }

    /// Applies the literal length limit to the given sequence. If none of the
    /// literals in the sequence exceed the limit, then this is a no-op.
    fn enforce_literal_len(&self, seq: &mut Seq) {
        let len = self.limit_literal_len;
        match self.kind {
            ExtractKind::Prefix => seq.keep_first_bytes(len),
            ExtractKind::Suffix => seq.keep_last_bytes(len),
        }
    }
}

impl Default for Extractor {
    fn default() -> Extractor {
        Extractor::new()
    }
}

/// The kind of literals to extract from an [`Hir`] expression.
///
/// The default extraction kind is `Prefix`.
#[non_exhaustive]
#[derive(Clone, Debug)]
pub enum ExtractKind {
    /// Extracts only prefix literals from a regex.
    Prefix,
    /// Extracts only suffix literals from a regex.
    ///
    /// Note that the sequence returned by suffix literals currently may
    /// not correctly represent leftmost-first or "preference" order match
    /// semantics.
    Suffix,
}

impl ExtractKind {
    /// Returns true if this kind is the `Prefix` variant.
    pub fn is_prefix(&self) -> bool {
        matches!(*self, ExtractKind::Prefix)
    }

    /// Returns true if this kind is the `Suffix` variant.
    pub fn is_suffix(&self) -> bool {
        matches!(*self, ExtractKind::Suffix)
    }
}

impl Default for ExtractKind {
    fn default() -> ExtractKind {
        ExtractKind::Prefix
    }
}

/// A sequence of literals.
///
/// A `Seq` is very much like a set in that it represents a union of its
/// members. That is, it corresponds to a set of literals where at least one
/// must match in order for a particular [`Hir`] expression to match. (Whether
/// this corresponds to the entire `Hir` expression, a prefix of it or a suffix
/// of it depends on how the `Seq` was extracted from the `Hir`.)
///
/// It is also unlike a set in that multiple identical literals may appear,
/// and that the order of the literals in the `Seq` matters. For example, if
/// the sequence is `[sam, samwise]` and leftmost-first matching is used, then
/// `samwise` can never match and the sequence is equivalent to `[sam]`.
///
/// # States of a sequence
///
/// A `Seq` has a few different logical states to consider:
///
/// * The sequence can represent "any" literal. When this happens, the set does
/// not have a finite size. The purpose of this state is to inhibit callers
/// from making assumptions about what literals are required in order to match
/// a particular [`Hir`] expression. Generally speaking, when a set is in this
/// state, literal optimizations are inhibited. A good example of a regex that
/// will cause this sort of set to apppear is `[A-Za-z]`. The character class
/// is just too big (and also too narrow) to be usefully expanded into 52
/// different literals. (Note that the decision for when a seq should become
/// infinite is determined by the caller. A seq itself has no hard-coded
/// limits.)
/// * The sequence can be empty, in which case, it is an affirmative statement
/// that there are no literals that can match the corresponding `Hir`.
/// Consequently, the `Hir` never matches any input. For example, `[a&&b]`.
/// * The sequence can be non-empty, in which case, at least one of the
/// literals must match in order for the corresponding `Hir` to match.
///
/// # Example
///
/// This example shows how literal sequences can be simplified by stripping
/// suffixes and minimizing while maintaining preference order.
///
/// ```
/// use regex_syntax::hir::literal::{Literal, Seq};
///
/// let mut seq = Seq::new(&[
///     "farm",
///     "appliance",
///     "faraway",
///     "apple",
///     "fare",
///     "gap",
///     "applicant",
///     "applaud",
/// ]);
/// seq.keep_first_bytes(3);
/// seq.minimize_by_preference();
/// // Notice that 'far' comes before 'app', which matches the order in the
/// // original sequence. This guarantees that leftmost-first semantics are
/// // not altered by simplifying the set.
/// let expected = Seq::from_iter([
///     Literal::inexact("far"),
///     Literal::inexact("app"),
///     Literal::exact("gap"),
/// ]);
/// assert_eq!(expected, seq);
/// ```
#[derive(Clone, Eq, PartialEq)]
pub struct Seq {
    /// The members of this seq.
    ///
    /// When `None`, the seq represents all possible literals. That is, it
    /// prevents one from making assumptions about specific literals in the
    /// seq, and forces one to treat it as if any literal might be in the seq.
    ///
    /// Note that `Some(vec![])` is valid and corresponds to the empty seq of
    /// literals, i.e., a regex that can never match. For example, `[a&&b]`.
    /// It is distinct from `Some(vec![""])`, which corresponds to the seq
    /// containing an empty string, which matches at every position.
    literals: Option<Vec<Literal>>,
}

impl Seq {
    /// Returns an empty sequence.
    ///
    /// An empty sequence matches zero literals, and thus corresponds to a
    /// regex that itself can never match.
    #[inline]
    pub fn empty() -> Seq {
        Seq { literals: Some(vec![]) }
    }

    /// Returns a sequence of literals without a finite size and may contain
    /// any literal.
    ///
    /// A sequence without finite size does not reveal anything about the
    /// characteristics of the literals in its set. There are no fixed prefixes
    /// or suffixes, nor are lower or upper bounds on the length of the literals
    /// in the set known.
    ///
    /// This is useful to represent constructs in a regex that are "too big"
    /// to useful represent as a sequence of literals. For example, `[A-Za-z]`.
    /// When sequences get too big, they lose their discriminating nature and
    /// are more likely to produce false positives, which in turn makes them
    /// less likely to speed up searches.
    ///
    /// More pragmatically, for many regexes, enumerating all possible literals
    /// is itself not possible or might otherwise use too many resources. So
    /// constraining the size of sets during extraction is a practical trade
    /// off to make.
    #[inline]
    pub fn infinite() -> Seq {
        Seq { literals: None }
    }

    /// Returns a sequence containing a single literal.
    #[inline]
    pub fn singleton(lit: Literal) -> Seq {
        Seq { literals: Some(vec![lit]) }
    }

    /// Returns a sequence of exact literals from the given byte strings.
    #[inline]
    pub fn new<I, B>(it: I) -> Seq
    where
        I: IntoIterator<Item = B>,
        B: AsRef<[u8]>,
    {
        it.into_iter().map(|b| Literal::exact(b.as_ref())).collect()
    }

    /// If this is a finite sequence, return its members as a slice of
    /// literals.
    ///
    /// The slice returned may be empty, in which case, there are no literals
    /// that can match this sequence.
    #[inline]
    pub fn literals(&self) -> Option<&[Literal]> {
        self.literals.as_deref()
    }

    /// Push a literal to the end of this sequence.
    ///
    /// If this sequence is not finite, then this is a no-op.
    ///
    /// Similarly, if the most recently added item of this sequence is
    /// equivalent to the literal given, then it is not added. This reflects
    /// a `Seq`'s "set like" behavior, and represents a practical trade off.
    /// Namely, there is never any need to have two adjacent and equivalent
    /// literals in the same sequence, _and_ it is easy to detect in some
    /// cases.
    #[inline]
    pub fn push(&mut self, lit: Literal) {
        let lits = match self.literals {
            None => return,
            Some(ref mut lits) => lits,
        };
        if lits.last().map_or(false, |m| m == &lit) {
            return;
        }
        lits.push(lit);
    }

    /// Make all of the literals in this sequence inexact.
    ///
    /// This is a no-op if this sequence is not finite.
    #[inline]
    pub fn make_inexact(&mut self) {
        let lits = match self.literals {
            None => return,
            Some(ref mut lits) => lits,
        };
        for lit in lits.iter_mut() {
            lit.make_inexact();
        }
    }

    /// Converts this sequence to an infinite sequence.
    ///
    /// This is a no-op if the sequence is already infinite.
    #[inline]
    pub fn make_infinite(&mut self) {
        self.literals = None;
    }

    /// Modify this sequence to contain the cross product between it and the
    /// sequence given.
    ///
    /// The cross product only considers literals in this sequence that are
    /// exact. That is, inexact literals are not extended.
    ///
    /// The literals are always drained from `other`, even if none are used.
    /// This permits callers to reuse the sequence allocation elsewhere.
    ///
    /// If this sequence is infinite, then this is a no-op, regardless of what
    /// `other` contains (and in this case, the literals are still drained from
    /// `other`). If `other` is infinite and this sequence is finite, then this
    /// is a no-op, unless this sequence contains a zero-length literal. In
    /// which case, the infiniteness of `other` infects this sequence, and this
    /// sequence is itself made infinite.
    ///
    /// Like [`Seq::union`], this may attempt to deduplicate literals. See
    /// [`Seq::dedup`] for how deduplication deals with exact and inexact
    /// literals.
    ///
    /// # Example
    ///
    /// This example shows basic usage and how exact and inexact literals
    /// interact.
    ///
    /// ```
    /// use regex_syntax::hir::literal::{Literal, Seq};
    ///
    /// let mut seq1 = Seq::from_iter([
    ///     Literal::exact("foo"),
    ///     Literal::inexact("bar"),
    /// ]);
    /// let mut seq2 = Seq::from_iter([
    ///     Literal::inexact("quux"),
    ///     Literal::exact("baz"),
    /// ]);
    /// seq1.cross_forward(&mut seq2);
    ///
    /// // The literals are pulled out of seq2.
    /// assert_eq!(Some(0), seq2.len());
    ///
    /// let expected = Seq::from_iter([
    ///     Literal::inexact("fooquux"),
    ///     Literal::exact("foobaz"),
    ///     Literal::inexact("bar"),
    /// ]);
    /// assert_eq!(expected, seq1);
    /// ```
    ///
    /// This example shows the behavior of when `other` is an infinite
    /// sequence.
    ///
    /// ```
    /// use regex_syntax::hir::literal::{Literal, Seq};
    ///
    /// let mut seq1 = Seq::from_iter([
    ///     Literal::exact("foo"),
    ///     Literal::inexact("bar"),
    /// ]);
    /// let mut seq2 = Seq::infinite();
    /// seq1.cross_forward(&mut seq2);
    ///
    /// // When seq2 is infinite, cross product doesn't add anything, but
    /// // ensures all members of seq1 are inexact.
    /// let expected = Seq::from_iter([
    ///     Literal::inexact("foo"),
    ///     Literal::inexact("bar"),
    /// ]);
    /// assert_eq!(expected, seq1);
    /// ```
    ///
    /// This example is like the one above, but shows what happens when this
    /// sequence contains an empty string. In this case, an infinite `other`
    /// sequence infects this sequence (because the empty string means that
    /// there are no finite prefixes):
    ///
    /// ```
    /// use regex_syntax::hir::literal::{Literal, Seq};
    ///
    /// let mut seq1 = Seq::from_iter([
    ///     Literal::exact("foo"),
    ///     Literal::exact(""), // inexact provokes same behavior
    ///     Literal::inexact("bar"),
    /// ]);
    /// let mut seq2 = Seq::infinite();
    /// seq1.cross_forward(&mut seq2);
    ///
    /// // seq1 is now infinite!
    /// assert!(!seq1.is_finite());
    /// ```
    ///
    /// This example shows the behavior of this sequence is infinite.
    ///
    /// ```
    /// use regex_syntax::hir::literal::{Literal, Seq};
    ///
    /// let mut seq1 = Seq::infinite();
    /// let mut seq2 = Seq::from_iter([
    ///     Literal::exact("foo"),
    ///     Literal::inexact("bar"),
    /// ]);
    /// seq1.cross_forward(&mut seq2);
    ///
    /// // seq1 remains unchanged.
    /// assert!(!seq1.is_finite());
    /// // Even though the literals in seq2 weren't used, it was still drained.
    /// assert_eq!(Some(0), seq2.len());
    /// ```
    #[inline]
    pub fn cross_forward(&mut self, other: &mut Seq) {
        let (lits1, lits2) = match self.cross_preamble(other) {
            None => return,
            Some((lits1, lits2)) => (lits1, lits2),
        };
        let newcap = lits1.len().saturating_mul(lits2.len());
        for selflit in mem::replace(lits1, Vec::with_capacity(newcap)) {
            if !selflit.is_exact() {
                lits1.push(selflit);
                continue;
            }
            for otherlit in lits2.iter() {
                let mut newlit = Literal::exact(Vec::with_capacity(
                    selflit.len() + otherlit.len(),
                ));
                newlit.extend(&selflit);
                newlit.extend(&otherlit);
                if !otherlit.is_exact() {
                    newlit.make_inexact();
                }
                lits1.push(newlit);
            }
        }
        lits2.drain(..);
        self.dedup();
    }

    /// Modify this sequence to contain the cross product between it and
    /// the sequence given, where the sequences are treated as suffixes
    /// instead of prefixes. Namely, the sequence `other` is *prepended*
    /// to `self` (as opposed to `other` being *appended* to `self` in
    /// [`Seq::cross_forward`]).
    ///
    /// The cross product only considers literals in this sequence that are
    /// exact. That is, inexact literals are not extended.
    ///
    /// The literals are always drained from `other`, even if none are used.
    /// This permits callers to reuse the sequence allocation elsewhere.
    ///
    /// If this sequence is infinite, then this is a no-op, regardless of what
    /// `other` contains (and in this case, the literals are still drained from
    /// `other`). If `other` is infinite and this sequence is finite, then this
    /// is a no-op, unless this sequence contains a zero-length literal. In
    /// which case, the infiniteness of `other` infects this sequence, and this
    /// sequence is itself made infinite.
    ///
    /// Like [`Seq::union`], this may attempt to deduplicate literals. See
    /// [`Seq::dedup`] for how deduplication deals with exact and inexact
    /// literals.
    ///
    /// # Example
    ///
    /// This example shows basic usage and how exact and inexact literals
    /// interact.
    ///
    /// ```
    /// use regex_syntax::hir::literal::{Literal, Seq};
    ///
    /// let mut seq1 = Seq::from_iter([
    ///     Literal::exact("foo"),
    ///     Literal::inexact("bar"),
    /// ]);
    /// let mut seq2 = Seq::from_iter([
    ///     Literal::inexact("quux"),
    ///     Literal::exact("baz"),
    /// ]);
    /// seq1.cross_reverse(&mut seq2);
    ///
    /// // The literals are pulled out of seq2.
    /// assert_eq!(Some(0), seq2.len());
    ///
    /// let expected = Seq::from_iter([
    ///     Literal::inexact("quuxfoo"),
    ///     Literal::inexact("bar"),
    ///     Literal::exact("bazfoo"),
    /// ]);
    /// assert_eq!(expected, seq1);
    /// ```
    ///
    /// This example shows the behavior of when `other` is an infinite
    /// sequence.
    ///
    /// ```
    /// use regex_syntax::hir::literal::{Literal, Seq};
    ///
    /// let mut seq1 = Seq::from_iter([
    ///     Literal::exact("foo"),
    ///     Literal::inexact("bar"),
    /// ]);
    /// let mut seq2 = Seq::infinite();
    /// seq1.cross_reverse(&mut seq2);
    ///
    /// // When seq2 is infinite, cross product doesn't add anything, but
    /// // ensures all members of seq1 are inexact.
    /// let expected = Seq::from_iter([
    ///     Literal::inexact("foo"),
    ///     Literal::inexact("bar"),
    /// ]);
    /// assert_eq!(expected, seq1);
    /// ```
    ///
    /// This example is like the one above, but shows what happens when this
    /// sequence contains an empty string. In this case, an infinite `other`
    /// sequence infects this sequence (because the empty string means that
    /// there are no finite suffixes):
    ///
    /// ```
    /// use regex_syntax::hir::literal::{Literal, Seq};
    ///
    /// let mut seq1 = Seq::from_iter([
    ///     Literal::exact("foo"),
    ///     Literal::exact(""), // inexact provokes same behavior
    ///     Literal::inexact("bar"),
    /// ]);
    /// let mut seq2 = Seq::infinite();
    /// seq1.cross_reverse(&mut seq2);
    ///
    /// // seq1 is now infinite!
    /// assert!(!seq1.is_finite());
    /// ```
    ///
    /// This example shows the behavior when this sequence is infinite.
    ///
    /// ```
    /// use regex_syntax::hir::literal::{Literal, Seq};
    ///
    /// let mut seq1 = Seq::infinite();
    /// let mut seq2 = Seq::from_iter([
    ///     Literal::exact("foo"),
    ///     Literal::inexact("bar"),
    /// ]);
    /// seq1.cross_reverse(&mut seq2);
    ///
    /// // seq1 remains unchanged.
    /// assert!(!seq1.is_finite());
    /// // Even though the literals in seq2 weren't used, it was still drained.
    /// assert_eq!(Some(0), seq2.len());
    /// ```
    #[inline]
    pub fn cross_reverse(&mut self, other: &mut Seq) {
        let (lits1, lits2) = match self.cross_preamble(other) {
            None => return,
            Some((lits1, lits2)) => (lits1, lits2),
        };
        // We basically proceed as we do in 'cross_forward' at this point,
        // except that the outer loop is now 'other' and the inner loop is now
        // 'self'. That's because 'self' corresponds to suffixes and 'other'
        // corresponds to the sequence we want to *prepend* to the suffixes.
        let newcap = lits1.len().saturating_mul(lits2.len());
        let selflits = mem::replace(lits1, Vec::with_capacity(newcap));
        for (i, otherlit) in lits2.drain(..).enumerate() {
            for selflit in selflits.iter() {
                if !selflit.is_exact() {
                    // If the suffix isn't exact, then we can't prepend
                    // anything to it. However, we still want to keep it. But
                    // we only want to keep one of them, to avoid duplication.
                    // (The duplication is okay from a correctness perspective,
                    // but wasteful.)
                    if i == 0 {
                        lits1.push(selflit.clone());
                    }
                    continue;
                }
                let mut newlit = Literal::exact(Vec::with_capacity(
                    otherlit.len() + selflit.len(),
                ));
                newlit.extend(&otherlit);
                newlit.extend(&selflit);
                if !otherlit.is_exact() {
                    newlit.make_inexact();
                }
                lits1.push(newlit);
            }
        }
        self.dedup();
    }

    /// A helper function the corresponds to the subtle preamble for both
    /// `cross_forward` and `cross_reverse`. In effect, it handles the cases
    /// of infinite sequences for both `self` and `other`, as well as ensuring
    /// that literals from `other` are drained even if they aren't used.
    fn cross_preamble<'a>(
        &'a mut self,
        other: &'a mut Seq,
    ) -> Option<(&'a mut Vec<Literal>, &'a mut Vec<Literal>)> {
        let lits2 = match other.literals {
            None => {
                // If our current seq contains the empty string and the seq
                // we're adding matches any literal, then it follows that the
                // current seq must now also match any literal.
                //
                // Otherwise, we just have to make sure everything in this
                // sequence is inexact.
                if self.min_literal_len() == Some(0) {
                    *self = Seq::infinite();
                } else {
                    self.make_inexact();
                }
                return None;
            }
            Some(ref mut lits) => lits,
        };
        let lits1 = match self.literals {
            None => {
                // If we aren't going to make it to the end of this routine
                // where lits2 is drained, then we need to do it now.
                lits2.drain(..);
                return None;
            }
            Some(ref mut lits) => lits,
        };
        Some((lits1, lits2))
    }

    /// Unions the `other` sequence into this one.
    ///
    /// The literals are always drained out of the given `other` sequence,
    /// even if they are being unioned into an infinite sequence. This permits
    /// the caller to reuse the `other` sequence in another context.
    ///
    /// Some literal deduping may be performed. If any deduping happens,
    /// any leftmost-first or "preference" order match semantics will be
    /// preserved.
    ///
    /// # Example
    ///
    /// This example shows basic usage.
    ///
    /// ```
    /// use regex_syntax::hir::literal::Seq;
    ///
    /// let mut seq1 = Seq::new(&["foo", "bar"]);
    /// let mut seq2 = Seq::new(&["bar", "quux", "foo"]);
    /// seq1.union(&mut seq2);
    ///
    /// // The literals are pulled out of seq2.
    /// assert_eq!(Some(0), seq2.len());
    ///
    /// // Adjacent literals are deduped, but non-adjacent literals may not be.
    /// assert_eq!(Seq::new(&["foo", "bar", "quux", "foo"]), seq1);
    /// ```
    ///
    /// This example shows that literals are drained from `other` even when
    /// they aren't necessarily used.
    ///
    /// ```
    /// use regex_syntax::hir::literal::Seq;
    ///
    /// let mut seq1 = Seq::infinite();
    /// // Infinite sequences have no finite length.
    /// assert_eq!(None, seq1.len());
    ///
    /// let mut seq2 = Seq::new(&["bar", "quux", "foo"]);
    /// seq1.union(&mut seq2);
    ///
    /// // seq1 is still infinite and seq2 has been drained.
    /// assert_eq!(None, seq1.len());
    /// assert_eq!(Some(0), seq2.len());
    /// ```
    #[inline]
    pub fn union(&mut self, other: &mut Seq) {
        let lits2 = match other.literals {
            None => {
                // Unioning with an infinite sequence always results in an
                // infinite sequence.
                self.make_infinite();
                return;
            }
            Some(ref mut lits) => lits.drain(..),
        };
        let lits1 = match self.literals {
            None => return,
            Some(ref mut lits) => lits,
        };
        lits1.extend(lits2);
        self.dedup();
    }

    /// Unions the `other` sequence into this one by splice the `other`
    /// sequence at the position of the first zero-length literal.
    ///
    /// This is useful for preserving preference order semantics when combining
    /// two literal sequences. For example, in the regex `(a||f)+foo`, the
    /// correct preference order prefix sequence is `[a, foo, f]`.
    ///
    /// The literals are always drained out of the given `other` sequence,
    /// even if they are being unioned into an infinite sequence. This permits
    /// the caller to reuse the `other` sequence in another context. Note that
    /// the literals are drained even if no union is performed as well, i.e.,
    /// when this sequence does not contain a zero-length literal.
    ///
    /// Some literal deduping may be performed. If any deduping happens,
    /// any leftmost-first or "preference" order match semantics will be
    /// preserved.
    ///
    /// # Example
    ///
    /// This example shows basic usage.
    ///
    /// ```
    /// use regex_syntax::hir::literal::Seq;
    ///
    /// let mut seq1 = Seq::new(&["a", "", "f", ""]);
    /// let mut seq2 = Seq::new(&["foo"]);
    /// seq1.union_into_empty(&mut seq2);
    ///
    /// // The literals are pulled out of seq2.
    /// assert_eq!(Some(0), seq2.len());
    /// // 'foo' gets spliced into seq1 where the first empty string occurs.
    /// assert_eq!(Seq::new(&["a", "foo", "f"]), seq1);
    /// ```
    ///
    /// This example shows that literals are drained from `other` even when
    /// they aren't necessarily used.
    ///
    /// ```
    /// use regex_syntax::hir::literal::Seq;
    ///
    /// let mut seq1 = Seq::new(&["foo", "bar"]);
    /// let mut seq2 = Seq::new(&["bar", "quux", "foo"]);
    /// seq1.union_into_empty(&mut seq2);
    ///
    /// // seq1 has no zero length literals, so no splicing happens.
    /// assert_eq!(Seq::new(&["foo", "bar"]), seq1);
    /// // Even though no splicing happens, seq2 is still drained.
    /// assert_eq!(Some(0), seq2.len());
    /// ```
    #[inline]
    pub fn union_into_empty(&mut self, other: &mut Seq) {
        let lits2 = other.literals.as_mut().map(|lits| lits.drain(..));
        let lits1 = match self.literals {
            None => return,
            Some(ref mut lits) => lits,
        };
        let first_empty = match lits1.iter().position(|m| m.is_empty()) {
            None => return,
            Some(i) => i,
        };
        let lits2 = match lits2 {
            None => {
                // Note that we are only here if we've found an empty literal,
                // which implies that an infinite sequence infects this seq and
                // also turns it into an infinite sequence.
                self.literals = None;
                return;
            }
            Some(lits) => lits,
        };
        // Clearing out the empties needs to come before the splice because
        // the splice might add more empties that we don't want to get rid
        // of. Since we're splicing into the position of the first empty, the
        // 'first_empty' position computed above is still correct.
        lits1.retain(|m| !m.is_empty());
        lits1.splice(first_empty..first_empty, lits2);
        self.dedup();
    }

    /// Deduplicate adjacent equivalent literals in this sequence.
    ///
    /// If adjacent literals are equivalent strings but one is exact and the
    /// other inexact, the inexact literal is kept and the exact one is
    /// removed.
    ///
    /// Deduping an infinite sequence is a no-op.
    ///
    /// # Example
    ///
    /// This example shows how literals that are duplicate byte strings but
    /// are not equivalent with respect to exactness are resolved.
    ///
    /// ```
    /// use regex_syntax::hir::literal::{Literal, Seq};
    ///
    /// let mut seq = Seq::from_iter([
    ///     Literal::exact("foo"),
    ///     Literal::inexact("foo"),
    /// ]);
    /// seq.dedup();
    ///
    /// assert_eq!(Seq::from_iter([Literal::inexact("foo")]), seq);
    /// ```
    #[inline]
    pub fn dedup(&mut self) {
        if let Some(ref mut lits) = self.literals {
            lits.dedup_by(|lit1, lit2| {
                if lit1.as_bytes() != lit2.as_bytes() {
                    return false;
                }
                if lit1.is_exact() != lit2.is_exact() {
                    lit1.make_inexact();
                    lit2.make_inexact();
                }
                true
            });
        }
    }

    /// Sorts this sequence of literals lexicographically.
    ///
    /// Note that if, before sorting, if a literal that is a prefix of another
    /// literal appears after it, then after sorting, the sequence will not
    /// represent the same preference order match semantics. For example,
    /// sorting the sequence `[samwise, sam]` yields the sequence `[sam,
    /// samwise]`. Under preference order semantics, the latter sequence will
    /// never match `samwise` where as the first sequence can.
    ///
    /// # Example
    ///
    /// This example shows basic usage.
    ///
    /// ```
    /// use regex_syntax::hir::literal::Seq;
    ///
    /// let mut seq = Seq::new(&["foo", "quux", "bar"]);
    /// seq.sort();
    ///
    /// assert_eq!(Seq::new(&["bar", "foo", "quux"]), seq);
    /// ```
    #[inline]
    pub fn sort(&mut self) {
        if let Some(ref mut lits) = self.literals {
            lits.sort();
        }
    }

    /// Reverses all of the literals in this sequence.
    ///
    /// The order of the sequence itself is preserved.
    ///
    /// # Example
    ///
    /// This example shows basic usage.
    ///
    /// ```
    /// use regex_syntax::hir::literal::Seq;
    ///
    /// let mut seq = Seq::new(&["oof", "rab"]);
    /// seq.reverse_literals();
    /// assert_eq!(Seq::new(&["foo", "bar"]), seq);
    /// ```
    #[inline]
    pub fn reverse_literals(&mut self) {
        if let Some(ref mut lits) = self.literals {
            for lit in lits.iter_mut() {
                lit.reverse();
            }
        }
    }

    /// Shrinks this seq to its minimal size while respecting the preference
    /// order of its literals.
    ///
    /// While this routine will remove duplicate literals from this seq, it
    /// will also remove literals that can never match in a leftmost-first or
    /// "preference order" search. Similar to [`Seq::dedup`], if a literal is
    /// deduped, then the one that remains is made inexact.
    ///
    /// This is a no-op on seqs that are empty or not finite.
    ///
    /// # Example
    ///
    /// This example shows the difference between `{sam, samwise}` and
    /// `{samwise, sam}`.
    ///
    /// ```
    /// use regex_syntax::hir::literal::{Literal, Seq};
    ///
    /// // If 'sam' comes before 'samwise' and a preference order search is
    /// // executed, then 'samwise' can never match.
    /// let mut seq = Seq::new(&["sam", "samwise"]);
    /// seq.minimize_by_preference();
    /// assert_eq!(Seq::from_iter([Literal::inexact("sam")]), seq);
    ///
    /// // But if they are reversed, then it's possible for 'samwise' to match
    /// // since it is given higher preference.
    /// let mut seq = Seq::new(&["samwise", "sam"]);
    /// seq.minimize_by_preference();
    /// assert_eq!(Seq::new(&["samwise", "sam"]), seq);
    /// ```
    ///
    /// This example shows that if an empty string is in this seq, then
    /// anything that comes after it can never match.
    ///
    /// ```
    /// use regex_syntax::hir::literal::{Literal, Seq};
    ///
    /// // An empty string is a prefix of all strings, so it automatically
    /// // inhibits any subsequent strings from matching.
    /// let mut seq = Seq::new(&["foo", "bar", "", "quux", "fox"]);
    /// seq.minimize_by_preference();
    /// let expected = Seq::from_iter([
    ///     Literal::exact("foo"),
    ///     Literal::exact("bar"),
    ///     Literal::inexact(""),
    /// ]);
    /// assert_eq!(expected, seq);
    ///
    /// // And of course, if it's at the beginning, then it makes it impossible
    /// // for anything else to match.
    /// let mut seq = Seq::new(&["", "foo", "quux", "fox"]);
    /// seq.minimize_by_preference();
    /// assert_eq!(Seq::from_iter([Literal::inexact("")]), seq);
    /// ```
    #[inline]
    pub fn minimize_by_preference(&mut self) {
        if let Some(ref mut lits) = self.literals {
            PreferenceTrie::minimize(lits, false);
        }
    }

    /// Trims all literals in this seq such that only the first `len` bytes
    /// remain. If a literal has less than or equal to `len` bytes, then it
    /// remains unchanged. Otherwise, it is trimmed and made inexact.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_syntax::hir::literal::{Literal, Seq};
    ///
    /// let mut seq = Seq::new(&["a", "foo", "quux"]);
    /// seq.keep_first_bytes(2);
    ///
    /// let expected = Seq::from_iter([
    ///     Literal::exact("a"),
    ///     Literal::inexact("fo"),
    ///     Literal::inexact("qu"),
    /// ]);
    /// assert_eq!(expected, seq);
    /// ```
    #[inline]
    pub fn keep_first_bytes(&mut self, len: usize) {
        if let Some(ref mut lits) = self.literals {
            for m in lits.iter_mut() {
                m.keep_first_bytes(len);
            }
        }
    }

    /// Trims all literals in this seq such that only the last `len` bytes
    /// remain. If a literal has less than or equal to `len` bytes, then it
    /// remains unchanged. Otherwise, it is trimmed and made inexact.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_syntax::hir::literal::{Literal, Seq};
    ///
    /// let mut seq = Seq::new(&["a", "foo", "quux"]);
    /// seq.keep_last_bytes(2);
    ///
    /// let expected = Seq::from_iter([
    ///     Literal::exact("a"),
    ///     Literal::inexact("oo"),
    ///     Literal::inexact("ux"),
    /// ]);
    /// assert_eq!(expected, seq);
    /// ```
    #[inline]
    pub fn keep_last_bytes(&mut self, len: usize) {
        if let Some(ref mut lits) = self.literals {
            for m in lits.iter_mut() {
                m.keep_last_bytes(len);
            }
        }
    }

    /// Returns true if this sequence is finite.
    ///
    /// When false, this sequence is infinite and must be treated as if it
    /// contains every possible literal.
    #[inline]
    pub fn is_finite(&self) -> bool {
        self.literals.is_some()
    }

    /// Returns true if and only if this sequence is finite and empty.
    ///
    /// An empty sequence never matches anything. It can only be produced by
    /// literal extraction when the corresponding regex itself cannot match.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == Some(0)
    }

    /// Returns the number of literals in this sequence if the sequence is
    /// finite. If the sequence is infinite, then `None` is returned.
    #[inline]
    pub fn len(&self) -> Option<usize> {
        self.literals.as_ref().map(|lits| lits.len())
    }

    /// Returns true if and only if all literals in this sequence are exact.
    ///
    /// This returns false if the sequence is infinite.
    #[inline]
    pub fn is_exact(&self) -> bool {
        self.literals().map_or(false, |lits| lits.iter().all(|x| x.is_exact()))
    }

    /// Returns true if and only if all literals in this sequence are inexact.
    ///
    /// This returns true if the sequence is infinite.
    #[inline]
    pub fn is_inexact(&self) -> bool {
        self.literals().map_or(true, |lits| lits.iter().all(|x| !x.is_exact()))
    }

    /// Return the maximum length of the sequence that would result from
    /// unioning `self` with `other`. If either set is infinite, then this
    /// returns `None`.
    #[inline]
    fn max_union_len(&self, other: &Seq) -> Option<usize> {
        let len1 = self.len()?;
        let len2 = other.len()?;
        Some(len1.saturating_add(len2))
    }

    /// Return the maximum length of the sequence that would result from the
    /// cross product of `self` with `other`. If either set is infinite, then
    /// this returns `None`.
    #[inline]
    fn max_cross_len(&self, other: &Seq) -> Option<usize> {
        let len1 = self.len()?;
        let len2 = other.len()?;
        Some(len1.saturating_mul(len2))
    }

    /// Returns the length of the shortest literal in this sequence.
    ///
    /// If the sequence is infinite or empty, then this returns `None`.
    #[inline]
    pub fn min_literal_len(&self) -> Option<usize> {
        self.literals.as_ref()?.iter().map(|x| x.len()).min()
    }

    /// Returns the length of the longest literal in this sequence.
    ///
    /// If the sequence is infinite or empty, then this returns `None`.
    #[inline]
    pub fn max_literal_len(&self) -> Option<usize> {
        self.literals.as_ref()?.iter().map(|x| x.len()).max()
    }

    /// Returns the longest common prefix from this seq.
    ///
    /// If the seq matches any literal or other contains no literals, then
    /// there is no meaningful prefix and this returns `None`.
    ///
    /// # Example
    ///
    /// This shows some example seqs and their longest common prefix.
    ///
    /// ```
    /// use regex_syntax::hir::literal::Seq;
    ///
    /// let seq = Seq::new(&["foo", "foobar", "fo"]);
    /// assert_eq!(Some(&b"fo"[..]), seq.longest_common_prefix());
    /// let seq = Seq::new(&["foo", "foo"]);
    /// assert_eq!(Some(&b"foo"[..]), seq.longest_common_prefix());
    /// let seq = Seq::new(&["foo", "bar"]);
    /// assert_eq!(Some(&b""[..]), seq.longest_common_prefix());
    /// let seq = Seq::new(&[""]);
    /// assert_eq!(Some(&b""[..]), seq.longest_common_prefix());
    ///
    /// let seq = Seq::infinite();
    /// assert_eq!(None, seq.longest_common_prefix());
    /// let seq = Seq::empty();
    /// assert_eq!(None, seq.longest_common_prefix());
    /// ```
    #[inline]
    pub fn longest_common_prefix(&self) -> Option<&[u8]> {
        // If we match everything or match nothing, then there's no meaningful
        // longest common prefix.
        let lits = match self.literals {
            None => return None,
            Some(ref lits) => lits,
        };
        if lits.len() == 0 {
            return None;
        }
        let base = lits[0].as_bytes();
        let mut len = base.len();
        for m in lits.iter().skip(1) {
            len = m
                .as_bytes()
                .iter()
                .zip(base[..len].iter())
                .take_while(|&(a, b)| a == b)
                .count();
            if len == 0 {
                return Some(&[]);
            }
        }
        Some(&base[..len])
    }

    /// Returns the longest common suffix from this seq.
    ///
    /// If the seq matches any literal or other contains no literals, then
    /// there is no meaningful suffix and this returns `None`.
    ///
    /// # Example
    ///
    /// This shows some example seqs and their longest common suffix.
    ///
    /// ```
    /// use regex_syntax::hir::literal::Seq;
    ///
    /// let seq = Seq::new(&["oof", "raboof", "of"]);
    /// assert_eq!(Some(&b"of"[..]), seq.longest_common_suffix());
    /// let seq = Seq::new(&["foo", "foo"]);
    /// assert_eq!(Some(&b"foo"[..]), seq.longest_common_suffix());
    /// let seq = Seq::new(&["foo", "bar"]);
    /// assert_eq!(Some(&b""[..]), seq.longest_common_suffix());
    /// let seq = Seq::new(&[""]);
    /// assert_eq!(Some(&b""[..]), seq.longest_common_suffix());
    ///
    /// let seq = Seq::infinite();
    /// assert_eq!(None, seq.longest_common_suffix());
    /// let seq = Seq::empty();
    /// assert_eq!(None, seq.longest_common_suffix());
    /// ```
    #[inline]
    pub fn longest_common_suffix(&self) -> Option<&[u8]> {
        // If we match everything or match nothing, then there's no meaningful
        // longest common suffix.
        let lits = match self.literals {
            None => return None,
            Some(ref lits) => lits,
        };
        if lits.len() == 0 {
            return None;
        }
        let base = lits[0].as_bytes();
        let mut len = base.len();
        for m in lits.iter().skip(1) {
            len = m
                .as_bytes()
                .iter()
                .rev()
                .zip(base[base.len() - len..].iter().rev())
                .take_while(|&(a, b)| a == b)
                .count();
            if len == 0 {
                return Some(&[]);
            }
        }
        Some(&base[base.len() - len..])
    }

    /// Optimizes this seq while treating its literals as prefixes and
    /// respecting the preference order of its literals.
    ///
    /// The specific way "optimization" works is meant to be an implementation
    /// detail, as it essentially represents a set of heuristics. The goal
    /// that optimization tries to accomplish is to make the literals in this
    /// set reflect inputs that will result in a more effective prefilter.
    /// Principally by reducing the false positive rate of candidates found by
    /// the literals in this sequence. That is, when a match of a literal is
    /// found, we would like it to be a strong predictor of the overall match
    /// of the regex. If it isn't, then much time will be spent starting and
    /// stopping the prefilter search and attempting to confirm the match only
    /// to have it fail.
    ///
    /// Some of those heuristics might be:
    ///
    /// * Identifying a common prefix from a larger sequence of literals, and
    /// shrinking the sequence down to that single common prefix.
    /// * Rejecting the sequence entirely if it is believed to result in very
    /// high false positive rate. When this happens, the sequence is made
    /// infinite.
    /// * Shrinking the sequence to a smaller number of literals representing
    /// prefixes, but not shrinking it so much as to make literals too short.
    /// (A sequence with very short literals, of 1 or 2 bytes, will typically
    /// result in a higher false positive rate.)
    ///
    /// Optimization should only be run once extraction is complete. Namely,
    /// optimization may make assumptions that do not compose with other
    /// operations in the middle of extraction. For example, optimization will
    /// reduce `[E(sam), E(samwise)]` to `[E(sam)]`, but such a transformation
    /// is only valid if no other extraction will occur. If other extraction
    /// may occur, then the correct transformation would be to `[I(sam)]`.
    ///
    /// The [`Seq::optimize_for_suffix_by_preference`] does the same thing, but
    /// for suffixes.
    ///
    /// # Example
    ///
    /// This shows how optimization might transform a sequence. Note that
    /// the specific behavior is not a documented guarantee. The heuristics
    /// used are an implementation detail and may change over time in semver
    /// compatible releases.
    ///
    /// ```
    /// use regex_syntax::hir::literal::{Seq, Literal};
    ///
    /// let mut seq = Seq::new(&[
    ///     "samantha",
    ///     "sam",
    ///     "samwise",
    ///     "frodo",
    /// ]);
    /// seq.optimize_for_prefix_by_preference();
    /// assert_eq!(Seq::from_iter([
    ///     Literal::exact("samantha"),
    ///     // Kept exact even though 'samwise' got pruned
    ///     // because optimization assumes literal extraction
    ///     // has finished.
    ///     Literal::exact("sam"),
    ///     Literal::exact("frodo"),
    /// ]), seq);
    /// ```
    ///
    /// # Example: optimization may make the sequence infinite
    ///
    /// If the heuristics deem that the sequence could cause a very high false
    /// positive rate, then it may make the sequence infinite, effectively
    /// disabling its use as a prefilter.
    ///
    /// ```
    /// use regex_syntax::hir::literal::{Seq, Literal};
    ///
    /// let mut seq = Seq::new(&[
    ///     "samantha",
    ///     // An empty string matches at every position,
    ///     // thus rendering the prefilter completely
    ///     // ineffective.
    ///     "",
    ///     "sam",
    ///     "samwise",
    ///     "frodo",
    /// ]);
    /// seq.optimize_for_prefix_by_preference();
    /// assert!(!seq.is_finite());
    /// ```
    ///
    /// Do note that just because there is a `" "` in the sequence, that
    /// doesn't mean the sequence will always be made infinite after it is
    /// optimized. Namely, if the sequence is considered exact (any match
    /// corresponds to an overall match of the original regex), then any match
    /// is an overall match, and so the false positive rate is always `0`.
    ///
    /// To demonstrate this, we remove `samwise` from our sequence. This
    /// results in no optimization happening and all literals remain exact.
    /// Thus the entire sequence is exact, and it is kept as-is, even though
    /// one is an ASCII space:
    ///
    /// ```
    /// use regex_syntax::hir::literal::{Seq, Literal};
    ///
    /// let mut seq = Seq::new(&[
    ///     "samantha",
    ///     " ",
    ///     "sam",
    ///     "frodo",
    /// ]);
    /// seq.optimize_for_prefix_by_preference();
    /// assert!(seq.is_finite());
    /// ```
    #[inline]
    pub fn optimize_for_prefix_by_preference(&mut self) {
        self.optimize_by_preference(true);
    }

    /// Optimizes this seq while treating its literals as suffixes and
    /// respecting the preference order of its literals.
    ///
    /// Optimization should only be run once extraction is complete.
    ///
    /// The [`Seq::optimize_for_prefix_by_preference`] does the same thing, but
    /// for prefixes. See its documentation for more explanation.
    #[inline]
    pub fn optimize_for_suffix_by_preference(&mut self) {
        self.optimize_by_preference(false);
    }

    fn optimize_by_preference(&mut self, prefix: bool) {
        let origlen = match self.len() {
            None => return,
            Some(len) => len,
        };
        // Make sure we start with the smallest sequence possible. We use a
        // special version of preference minimization that retains exactness.
        // This is legal because optimization is only expected to occur once
        // extraction is complete.
        if prefix {
            if let Some(ref mut lits) = self.literals {
                PreferenceTrie::minimize(lits, true);
            }
        }

        // Look for a common prefix (or suffix). If we found one of those and
        // it's long enough, then it's a good bet that it will be our fastest
        // possible prefilter since single-substring search is so fast.
        let fix = if prefix {
            self.longest_common_prefix()
        } else {
            self.longest_common_suffix()
        };
        if let Some(fix) = fix {
            // As a special case, if we have a common prefix and the leading
            // byte of that prefix is one that we think probably occurs rarely,
            // then strip everything down to just that single byte. This should
            // promote the use of memchr.
            //
            // ... we only do this though if our sequence has more than one
            // literal. Otherwise, we'd rather just stick with a single literal
            // scan. That is, using memchr is probably better than looking
            // for 2 or more literals, but probably not as good as a straight
            // memmem search.
            //
            // ... and also only do this when the prefix is short and probably
            // not too discriminatory anyway. If it's longer, then it's
            // probably quite discriminatory and thus is likely to have a low
            // false positive rate.
            if prefix
                && origlen > 1
                && fix.len() >= 1
                && fix.len() <= 3
                && rank(fix[0]) < 200
            {
                self.keep_first_bytes(1);
                self.dedup();
                return;
            }
            // We only strip down to the common prefix/suffix if we think
            // the existing set of literals isn't great, or if the common
            // prefix/suffix is expected to be particularly discriminatory.
            let isfast =
                self.is_exact() && self.len().map_or(false, |len| len <= 16);
            let usefix = fix.len() > 4 || (fix.len() > 1 && !isfast);
            if usefix {
                // If we keep exactly the number of bytes equal to the length
                // of the prefix (or suffix), then by the definition of a
                // prefix, every literal in the sequence will be equivalent.
                // Thus, 'dedup' will leave us with one literal.
                //
                // We do it this way to avoid an alloc, but also to make sure
                // the exactness of literals is kept (or not).
                if prefix {
                    self.keep_first_bytes(fix.len());
                } else {
                    self.keep_last_bytes(fix.len());
                }
                self.dedup();
                assert_eq!(Some(1), self.len());
                // We still fall through here. In particular, we want our
                // longest common prefix to be subject to the poison check.
            }
        }
        // Everything below this check is more-or-less about trying to
        // heuristically reduce the false positive rate of a prefilter. But
        // if our sequence is completely exact, then it's possible the regex
        // engine can be skipped entirely. In this case, the false positive
        // rate is zero because every literal match corresponds to a regex
        // match.
        //
        // This is OK even if the sequence contains a poison literal. Remember,
        // a literal is only poisononous because of what we assume about its
        // impact on the false positive rate. However, we do still check for
        // an empty string. Empty strings are weird and it's best to let the
        // regex engine handle those.
        //
        // We do currently do this check after the longest common prefix (or
        // suffix) check, under the theory that single-substring search is so
        // fast that we want that even if we'd end up turning an exact sequence
        // into an inexact one. But this might be wrong...
        if self.is_exact()
            && self.min_literal_len().map_or(false, |len| len > 0)
        {
            return;
        }
        // Now we attempt to shorten the sequence. The idea here is that we
        // don't want to look for too many literals, but we want to shorten
        // our sequence enough to improve our odds of using better algorithms
        // downstream (such as Teddy).
        const ATTEMPTS: [(usize, usize); 5] =
            [(5, 64), (4, 64), (3, 64), (2, 64), (1, 10)];
        for (keep, limit) in ATTEMPTS {
            let len = match self.len() {
                None => break,
                Some(len) => len,
            };
            if len <= limit {
                break;
            }
            if prefix {
                self.keep_first_bytes(keep);
            } else {
                self.keep_last_bytes(keep);
            }
            self.minimize_by_preference();
        }
        // Check for a poison literal. A poison literal is one that is short
        // and is believed to have a very high match count. These poisons
        // generally lead to a prefilter with a very high false positive rate,
        // and thus overall worse performance.
        //
        // We do this last because we could have gone from a non-poisonous
        // sequence to a poisonous one. Perhaps we should add some code to
        // prevent such transitions in the first place, but then again, we
        // likely only made the transition in the first place if the sequence
        // was itself huge. And huge sequences are themselves poisonous. So...
        if let Some(lits) = self.literals() {
            if lits.iter().any(|lit| lit.is_poisonous()) {
                self.make_infinite();
            }
        }
    }
}

impl core::fmt::Debug for Seq {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(f, "Seq")?;
        if let Some(lits) = self.literals() {
            f.debug_list().entries(lits.iter()).finish()
        } else {
            write!(f, "[∅]")
        }
    }
}

impl FromIterator<Literal> for Seq {
    fn from_iter<T: IntoIterator<Item = Literal>>(it: T) -> Seq {
        let mut seq = Seq::empty();
        for literal in it {
            seq.push(literal);
        }
        seq
    }
}

/// A single literal extracted from an [`Hir`] expression.
///
/// A literal is composed of two things:
///
/// * A sequence of bytes. No guarantees with respect to UTF-8 are provided.
/// In particular, even if the regex a literal is extracted from is UTF-8, the
/// literal extracted may not be valid UTF-8. (For example, if an [`Extractor`]
/// limit resulted in trimming a literal in a way that splits a codepoint.)
/// * Whether the literal is "exact" or not. An "exact" literal means that it
/// has not been trimmed, and may continue to be extended. If a literal is
/// "exact" after visiting the entire `Hir` expression, then this implies that
/// the literal leads to a match state. (Although it doesn't necessarily imply
/// all occurrences of the literal correspond to a match of the regex, since
/// literal extraction ignores look-around assertions.)
#[derive(Clone, Eq, PartialEq, PartialOrd, Ord)]
pub struct Literal {
    bytes: Vec<u8>,
    exact: bool,
}

impl Literal {
    /// Returns a new exact literal containing the bytes given.
    #[inline]
    pub fn exact<B: Into<Vec<u8>>>(bytes: B) -> Literal {
        Literal { bytes: bytes.into(), exact: true }
    }

    /// Returns a new inexact literal containing the bytes given.
    #[inline]
    pub fn inexact<B: Into<Vec<u8>>>(bytes: B) -> Literal {
        Literal { bytes: bytes.into(), exact: false }
    }

    /// Returns the bytes in this literal.
    #[inline]
    pub fn as_bytes(&self) -> &[u8] {
        &self.bytes
    }

    /// Yields ownership of the bytes inside this literal.
    ///
    /// Note that this throws away whether the literal is "exact" or not.
    #[inline]
    pub fn into_bytes(self) -> Vec<u8> {
        self.bytes
    }

    /// Returns the length of this literal in bytes.
    #[inline]
    pub fn len(&self) -> usize {
        self.as_bytes().len()
    }

    /// Returns true if and only if this literal has zero bytes.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns true if and only if this literal is exact.
    #[inline]
    pub fn is_exact(&self) -> bool {
        self.exact
    }

    /// Marks this literal as inexact.
    ///
    /// Inexact literals can never be extended. For example,
    /// [`Seq::cross_forward`] will not extend inexact literals.
    #[inline]
    pub fn make_inexact(&mut self) {
        self.exact = false;
    }

    /// Reverse the bytes in this literal.
    #[inline]
    pub fn reverse(&mut self) {
        self.bytes.reverse();
    }

    /// Extend this literal with the literal given.
    ///
    /// If this literal is inexact, then this is a no-op.
    #[inline]
    pub fn extend(&mut self, lit: &Literal) {
        if !self.is_exact() {
            return;
        }
        self.bytes.extend_from_slice(&lit.bytes);
    }

    /// Trims this literal such that only the first `len` bytes remain. If
    /// this literal has fewer than `len` bytes, then it remains unchanged.
    /// Otherwise, the literal is marked as inexact.
    #[inline]
    pub fn keep_first_bytes(&mut self, len: usize) {
        if len >= self.len() {
            return;
        }
        self.make_inexact();
        self.bytes.truncate(len);
    }

    /// Trims this literal such that only the last `len` bytes remain. If this
    /// literal has fewer than `len` bytes, then it remains unchanged.
    /// Otherwise, the literal is marked as inexact.
    #[inline]
    pub fn keep_last_bytes(&mut self, len: usize) {
        if len >= self.len() {
            return;
        }
        self.make_inexact();
        self.bytes.drain(..self.len() - len);
    }

    /// Returns true if it is believe that this literal is likely to match very
    /// frequently, and is thus not a good candidate for a prefilter.
    fn is_poisonous(&self) -> bool {
        self.is_empty() || (self.len() == 1 && rank(self.as_bytes()[0]) >= 250)
    }
}

impl From<u8> for Literal {
    fn from(byte: u8) -> Literal {
        Literal::exact(vec![byte])
    }
}

impl From<char> for Literal {
    fn from(ch: char) -> Literal {
        use alloc::string::ToString;
        Literal::exact(ch.encode_utf8(&mut [0; 4]).to_string())
    }
}

impl AsRef<[u8]> for Literal {
    fn as_ref(&self) -> &[u8] {
        self.as_bytes()
    }
}

impl core::fmt::Debug for Literal {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        let tag = if self.exact { "E" } else { "I" };
        f.debug_tuple(tag)
            .field(&crate::debug::Bytes(self.as_bytes()))
            .finish()
    }
}

/// A "preference" trie that rejects literals that will never match when
/// executing a leftmost first or "preference" search.
///
/// For example, if 'sam' is inserted, then trying to insert 'samwise' will be
/// rejected because 'samwise' can never match since 'sam' will always take
/// priority. However, if 'samwise' is inserted first, then inserting 'sam'
/// after it is accepted. In this case, either 'samwise' or 'sam' can match in
/// a "preference" search.
///
/// Note that we only use this trie as a "set." That is, given a sequence of
/// literals, we insert each one in order. An `insert` will reject a literal
/// if a prefix of that literal already exists in the trie. Thus, to rebuild
/// the "minimal" sequence, we simply only keep literals that were successfully
/// inserted. (Since we don't need traversal, one wonders whether we can make
/// some simplifications here, but I haven't given it a ton of thought and I've
/// never seen this show up on a profile. Because of the heuristic limits
/// imposed on literal extractions, the size of the inputs here is usually
/// very small.)
#[derive(Debug, Default)]
struct PreferenceTrie {
    /// The states in this trie. The index of a state in this vector is its ID.
    states: Vec<State>,
    /// The index to allocate to the next literal added to this trie. Starts at
    /// 0 and increments by 1 for every literal successfully added to the trie.
    next_literal_index: usize,
}

/// A single state in a trie. Uses a sparse representation for its transitions.
#[derive(Debug, Default)]
struct State {
    /// Sparse representation of the transitions out of this state. Transitions
    /// are sorted by byte. There is at most one such transition for any
    /// particular byte.
    trans: Vec<(u8, usize)>,
    /// Whether this is a matching state or not. If it is, then it contains the
    /// index to the matching literal.
    literal_index: Option<usize>,
}

impl PreferenceTrie {
    /// Minimizes the given sequence of literals while preserving preference
    /// order semantics.
    ///
    /// When `keep_exact` is true, the exactness of every literal retained is
    /// kept. This is useful when dealing with a fully extracted `Seq` that
    /// only contains exact literals. In that case, we can keep all retained
    /// literals as exact because we know we'll never need to match anything
    /// after them and because any removed literals are guaranteed to never
    /// match.
    fn minimize(literals: &mut Vec<Literal>, keep_exact: bool) {
        use core::cell::RefCell;

        // MSRV(1.61): Use retain_mut here to avoid interior mutability.
        let trie = RefCell::new(PreferenceTrie::default());
        let mut make_inexact = vec![];
        literals.retain(|lit| {
            match trie.borrow_mut().insert(lit.as_bytes()) {
                Ok(_) => true,
                Err(i) => {
                    if !keep_exact {
                        make_inexact.push(i);
                    }
                    false
                }
            }
        });
        for i in make_inexact {
            literals[i].make_inexact();
        }
    }

    /// Returns `Ok` if the given byte string is accepted into this trie and
    /// `Err` otherwise. The index for the success case corresponds to the
    /// index of the literal added. The index for the error case corresponds to
    /// the index of the literal already in the trie that prevented the given
    /// byte string from being added. (Which implies it is a prefix of the one
    /// given.)
    ///
    /// In short, the byte string given is accepted into the trie if and only
    /// if it is possible for it to match when executing a preference order
    /// search.
    fn insert(&mut self, bytes: &[u8]) -> Result<usize, usize> {
        let mut prev = self.root();
        if let Some(idx) = self.states[prev].literal_index {
            return Err(idx);
        }
        for &b in bytes.iter() {
            match self.states[prev].trans.binary_search_by_key(&b, |t| t.0) {
                Ok(i) => {
                    prev = self.states[prev].trans[i].1;
                    if let Some(idx) = self.states[prev].literal_index {
                        return Err(idx);
                    }
                }
                Err(i) => {
                    let next = self.create_state();
                    self.states[prev].trans.insert(i, (b, next));
                    prev = next;
                }
            }
        }
        let idx = self.next_literal_index;
        self.next_literal_index += 1;
        self.states[prev].literal_index = Some(idx);
        Ok(idx)
    }

    /// Returns the root state ID, and if it doesn't exist, creates it.
    fn root(&mut self) -> usize {
        if !self.states.is_empty() {
            0
        } else {
            self.create_state()
        }
    }

    /// Creates a new empty state and returns its ID.
    fn create_state(&mut self) -> usize {
        let id = self.states.len();
        self.states.push(State::default());
        id
    }
}

/// Returns the "rank" of the given byte.
///
/// The minimum rank value is `0` and the maximum rank value is `255`.
///
/// The rank of a byte is derived from a heuristic background distribution of
/// relative frequencies of bytes. The heuristic says that lower the rank of a
/// byte, the less likely that byte is to appear in any arbitrary haystack.
pub fn rank(byte: u8) -> u8 {
    crate::rank::BYTE_FREQUENCIES[usize::from(byte)]
}

#[cfg(test)]
mod tests {
    use super::*;

    fn parse(pattern: &str) -> Hir {
        crate::ParserBuilder::new().utf8(false).build().parse(pattern).unwrap()
    }

    fn prefixes(pattern: &str) -> Seq {
        Extractor::new().kind(ExtractKind::Prefix).extract(&parse(pattern))
    }

    fn suffixes(pattern: &str) -> Seq {
        Extractor::new().kind(ExtractKind::Suffix).extract(&parse(pattern))
    }

    fn e(pattern: &str) -> (Seq, Seq) {
        (prefixes(pattern), suffixes(pattern))
    }

    #[allow(non_snake_case)]
    fn E(x: &str) -> Literal {
        Literal::exact(x.as_bytes())
    }

    #[allow(non_snake_case)]
    fn I(x: &str) -> Literal {
        Literal::inexact(x.as_bytes())
    }

    fn seq<I: IntoIterator<Item = Literal>>(it: I) -> Seq {
        Seq::from_iter(it)
    }

    fn infinite() -> (Seq, Seq) {
        (Seq::infinite(), Seq::infinite())
    }

    fn inexact<I1, I2>(it1: I1, it2: I2) -> (Seq, Seq)
    where
        I1: IntoIterator<Item = Literal>,
        I2: IntoIterator<Item = Literal>,
    {
        (Seq::from_iter(it1), Seq::from_iter(it2))
    }

    fn exact<B: AsRef<[u8]>, I: IntoIterator<Item = B>>(it: I) -> (Seq, Seq) {
        let s1 = Seq::new(it);
        let s2 = s1.clone();
        (s1, s2)
    }

    fn opt<B: AsRef<[u8]>, I: IntoIterator<Item = B>>(it: I) -> (Seq, Seq) {
        let (mut p, mut s) = exact(it);
        p.optimize_for_prefix_by_preference();
        s.optimize_for_suffix_by_preference();
        (p, s)
    }

    #[test]
    fn literal() {
        assert_eq!(exact(["a"]), e("a"));
        assert_eq!(exact(["aaaaa"]), e("aaaaa"));
        assert_eq!(exact(["A", "a"]), e("(?i-u)a"));
        assert_eq!(exact(["AB", "Ab", "aB", "ab"]), e("(?i-u)ab"));
        assert_eq!(exact(["abC", "abc"]), e("ab(?i-u)c"));

        assert_eq!(exact([b"\xFF"]), e(r"(?-u:\xFF)"));

        #[cfg(feature = "unicode-case")]
        {
            assert_eq!(exact(["☃"]), e("☃"));
            assert_eq!(exact(["☃"]), e("(?i)☃"));
            assert_eq!(exact(["☃☃☃☃☃"]), e("☃☃☃☃☃"));

            assert_eq!(exact(["Δ"]), e("Δ"));
            assert_eq!(exact(["δ"]), e("δ"));
            assert_eq!(exact(["Δ", "δ"]), e("(?i)Δ"));
            assert_eq!(exact(["Δ", "δ"]), e("(?i)δ"));

            assert_eq!(exact(["S", "s", "ſ"]), e("(?i)S"));
            assert_eq!(exact(["S", "s", "ſ"]), e("(?i)s"));
            assert_eq!(exact(["S", "s", "ſ"]), e("(?i)ſ"));
        }

        let letters = "ͱͳͷΐάέήίΰαβγδεζηθικλμνξοπρςστυφχψωϊϋ";
        assert_eq!(exact([letters]), e(letters));
    }

    #[test]
    fn class() {
        assert_eq!(exact(["a", "b", "c"]), e("[abc]"));
        assert_eq!(exact(["a1b", "a2b", "a3b"]), e("a[123]b"));
        assert_eq!(exact(["δ", "ε"]), e("[εδ]"));
        #[cfg(feature = "unicode-case")]
        {
            assert_eq!(exact(["Δ", "Ε", "δ", "ε", "ϵ"]), e(r"(?i)[εδ]"));
        }
    }

    #[test]
    fn look() {
        assert_eq!(exact(["ab"]), e(r"a\Ab"));
        assert_eq!(exact(["ab"]), e(r"a\zb"));
        assert_eq!(exact(["ab"]), e(r"a(?m:^)b"));
        assert_eq!(exact(["ab"]), e(r"a(?m:$)b"));
        assert_eq!(exact(["ab"]), e(r"a\bb"));
        assert_eq!(exact(["ab"]), e(r"a\Bb"));
        assert_eq!(exact(["ab"]), e(r"a(?-u:\b)b"));
        assert_eq!(exact(["ab"]), e(r"a(?-u:\B)b"));

        assert_eq!(exact(["ab"]), e(r"^ab"));
        assert_eq!(exact(["ab"]), e(r"$ab"));
        assert_eq!(exact(["ab"]), e(r"(?m:^)ab"));
        assert_eq!(exact(["ab"]), e(r"(?m:$)ab"));
        assert_eq!(exact(["ab"]), e(r"\bab"));
        assert_eq!(exact(["ab"]), e(r"\Bab"));
        assert_eq!(exact(["ab"]), e(r"(?-u:\b)ab"));
        assert_eq!(exact(["ab"]), e(r"(?-u:\B)ab"));

        assert_eq!(exact(["ab"]), e(r"ab^"));
        assert_eq!(exact(["ab"]), e(r"ab$"));
        assert_eq!(exact(["ab"]), e(r"ab(?m:^)"));
        assert_eq!(exact(["ab"]), e(r"ab(?m:$)"));
        assert_eq!(exact(["ab"]), e(r"ab\b"));
        assert_eq!(exact(["ab"]), e(r"ab\B"));
        assert_eq!(exact(["ab"]), e(r"ab(?-u:\b)"));
        assert_eq!(exact(["ab"]), e(r"ab(?-u:\B)"));

        let expected = (seq([I("aZ"), E("ab")]), seq([I("Zb"), E("ab")]));
        assert_eq!(expected, e(r"^aZ*b"));
    }

    #[test]
    fn repetition() {
        assert_eq!(exact(["a", ""]), e(r"a?"));
        assert_eq!(exact(["", "a"]), e(r"a??"));
        assert_eq!(inexact([I("a"), E("")], [I("a"), E("")]), e(r"a*"));
        assert_eq!(inexact([E(""), I("a")], [E(""), I("a")]), e(r"a*?"));
        assert_eq!(inexact([I("a")], [I("a")]), e(r"a+"));
        assert_eq!(inexact([I("a")], [I("a")]), e(r"(a+)+"));

        assert_eq!(exact(["ab"]), e(r"aZ{0}b"));
        assert_eq!(exact(["aZb", "ab"]), e(r"aZ?b"));
        assert_eq!(exact(["ab", "aZb"]), e(r"aZ??b"));
        assert_eq!(
            inexact([I("aZ"), E("ab")], [I("Zb"), E("ab")]),
            e(r"aZ*b")
        );
        assert_eq!(
            inexact([E("ab"), I("aZ")], [E("ab"), I("Zb")]),
            e(r"aZ*?b")
        );
        assert_eq!(inexact([I("aZ")], [I("Zb")]), e(r"aZ+b"));
        assert_eq!(inexact([I("aZ")], [I("Zb")]), e(r"aZ+?b"));

        assert_eq!(exact(["aZZb"]), e(r"aZ{2}b"));
        assert_eq!(inexact([I("aZZ")], [I("ZZb")]), e(r"aZ{2,3}b"));

        assert_eq!(exact(["abc", ""]), e(r"(abc)?"));
        assert_eq!(exact(["", "abc"]), e(r"(abc)??"));

        assert_eq!(inexact([I("a"), E("b")], [I("ab"), E("b")]), e(r"a*b"));
        assert_eq!(inexact([E("b"), I("a")], [E("b"), I("ab")]), e(r"a*?b"));
        assert_eq!(inexact([I("ab")], [I("b")]), e(r"ab+"));
        assert_eq!(inexact([I("a"), I("b")], [I("b")]), e(r"a*b+"));

        // FIXME: The suffixes for this don't look quite right to me. I think
        // the right suffixes would be: [I(ac), I(bc), E(c)]. The main issue I
        // think is that suffixes are computed by iterating over concatenations
        // in reverse, and then [bc, ac, c] ordering is indeed correct from
        // that perspective. We also test a few more equivalent regexes, and
        // we get the same result, so it is consistent at least I suppose.
        //
        // The reason why this isn't an issue is that it only messes up
        // preference order, and currently, suffixes are never used in a
        // context where preference order matters. For prefixes it matters
        // because we sometimes want to use prefilters without confirmation
        // when all of the literals are exact (and there's no look-around). But
        // we never do that for suffixes. Any time we use suffixes, we always
        // include a confirmation step. If that ever changes, then it's likely
        // this bug will need to be fixed, but last time I looked, it appears
        // hard to do so.
        assert_eq!(
            inexact([I("a"), I("b"), E("c")], [I("bc"), I("ac"), E("c")]),
            e(r"a*b*c")
        );
        assert_eq!(
            inexact([I("a"), I("b"), E("c")], [I("bc"), I("ac"), E("c")]),
            e(r"(a+)?(b+)?c")
        );
        assert_eq!(
            inexact([I("a"), I("b"), E("c")], [I("bc"), I("ac"), E("c")]),
            e(r"(a+|)(b+|)c")
        );
        // A few more similarish but not identical regexes. These may have a
        // similar problem as above.
        assert_eq!(
            inexact(
                [I("a"), I("b"), I("c"), E("")],
                [I("c"), I("b"), I("a"), E("")]
            ),
            e(r"a*b*c*")
        );
        assert_eq!(inexact([I("a"), I("b"), I("c")], [I("c")]), e(r"a*b*c+"));
        assert_eq!(inexact([I("a"), I("b")], [I("bc")]), e(r"a*b+c"));
        assert_eq!(inexact([I("a"), I("b")], [I("c"), I("b")]), e(r"a*b+c*"));
        assert_eq!(inexact([I("ab"), E("a")], [I("b"), E("a")]), e(r"ab*"));
        assert_eq!(
            inexact([I("ab"), E("ac")], [I("bc"), E("ac")]),
            e(r"ab*c")
        );
        assert_eq!(inexact([I("ab")], [I("b")]), e(r"ab+"));
        assert_eq!(inexact([I("ab")], [I("bc")]), e(r"ab+c"));

        assert_eq!(
            inexact([I("z"), E("azb")], [I("zazb"), E("azb")]),
            e(r"z*azb")
        );

        let expected =
            exact(["aaa", "aab", "aba", "abb", "baa", "bab", "bba", "bbb"]);
        assert_eq!(expected, e(r"[ab]{3}"));
        let expected = inexact(
            [
                I("aaa"),
                I("aab"),
                I("aba"),
                I("abb"),
                I("baa"),
                I("bab"),
                I("bba"),
                I("bbb"),
            ],
            [
                I("aaa"),
                I("aab"),
                I("aba"),
                I("abb"),
                I("baa"),
                I("bab"),
                I("bba"),
                I("bbb"),
            ],
        );
        assert_eq!(expected, e(r"[ab]{3,4}"));
    }

    #[test]
    fn concat() {
        let empty: [&str; 0] = [];

        assert_eq!(exact(["abcxyz"]), e(r"abc()xyz"));
        assert_eq!(exact(["abcxyz"]), e(r"(abc)(xyz)"));
        assert_eq!(exact(["abcmnoxyz"]), e(r"abc()mno()xyz"));
        assert_eq!(exact(empty), e(r"abc[a&&b]xyz"));
        assert_eq!(exact(["abcxyz"]), e(r"abc[a&&b]*xyz"));
    }

    #[test]
    fn alternation() {
        assert_eq!(exact(["abc", "mno", "xyz"]), e(r"abc|mno|xyz"));
        assert_eq!(
            inexact(
                [E("abc"), I("mZ"), E("mo"), E("xyz")],
                [E("abc"), I("Zo"), E("mo"), E("xyz")]
            ),
            e(r"abc|mZ*o|xyz")
        );
        assert_eq!(exact(["abc", "xyz"]), e(r"abc|M[a&&b]N|xyz"));
        assert_eq!(exact(["abc", "MN", "xyz"]), e(r"abc|M[a&&b]*N|xyz"));

        assert_eq!(exact(["aaa", "aaaaa"]), e(r"(?:|aa)aaa"));
        assert_eq!(
            inexact(
                [I("aaa"), E(""), I("aaaaa"), E("aa")],
                [I("aaa"), E(""), E("aa")]
            ),
            e(r"(?:|aa)(?:aaa)*")
        );
        assert_eq!(
            inexact(
                [E(""), I("aaa"), E("aa"), I("aaaaa")],
                [E(""), I("aaa"), E("aa")]
            ),
            e(r"(?:|aa)(?:aaa)*?")
        );

        assert_eq!(
            inexact([E("a"), I("b"), E("")], [E("a"), I("b"), E("")]),
            e(r"a|b*")
        );
        assert_eq!(inexact([E("a"), I("b")], [E("a"), I("b")]), e(r"a|b+"));

        assert_eq!(
            inexact([I("a"), E("b"), E("c")], [I("ab"), E("b"), E("c")]),
            e(r"a*b|c")
        );

        assert_eq!(
            inexact(
                [E("a"), E("b"), I("c"), E("")],
                [E("a"), E("b"), I("c"), E("")]
            ),
            e(r"a|(?:b|c*)")
        );

        assert_eq!(
            inexact(
                [I("a"), I("b"), E("c"), I("a"), I("ab"), E("c")],
                [I("ac"), I("bc"), E("c"), I("ac"), I("abc"), E("c")],
            ),
            e(r"(a|b)*c|(a|ab)*c")
        );

        assert_eq!(
            exact(["abef", "abgh", "cdef", "cdgh"]),
            e(r"(ab|cd)(ef|gh)")
        );
        assert_eq!(
            exact([
                "abefij", "abefkl", "abghij", "abghkl", "cdefij", "cdefkl",
                "cdghij", "cdghkl",
            ]),
            e(r"(ab|cd)(ef|gh)(ij|kl)")
        );
    }

    #[test]
    fn impossible() {
        let empty: [&str; 0] = [];

        assert_eq!(exact(empty), e(r"[a&&b]"));
        assert_eq!(exact(empty), e(r"a[a&&b]"));
        assert_eq!(exact(empty), e(r"[a&&b]b"));
        assert_eq!(exact(empty), e(r"a[a&&b]b"));
        assert_eq!(exact(["a", "b"]), e(r"a|[a&&b]|b"));
        assert_eq!(exact(["a", "b"]), e(r"a|c[a&&b]|b"));
        assert_eq!(exact(["a", "b"]), e(r"a|[a&&b]d|b"));
        assert_eq!(exact(["a", "b"]), e(r"a|c[a&&b]d|b"));
        assert_eq!(exact([""]), e(r"[a&&b]*"));
        assert_eq!(exact(["MN"]), e(r"M[a&&b]*N"));
    }

    // This tests patterns that contain something that defeats literal
    // detection, usually because it would blow some limit on the total number
    // of literals that can be returned.
    //
    // The main idea is that when literal extraction sees something that
    // it knows will blow a limit, it replaces it with a marker that says
    // "any literal will match here." While not necessarily true, the
    // over-estimation is just fine for the purposes of literal extraction,
    // because the imprecision doesn't matter: too big is too big.
    //
    // This is one of the trickier parts of literal extraction, since we need
    // to make sure all of our literal extraction operations correctly compose
    // with the markers.
    #[test]
    fn anything() {
        assert_eq!(infinite(), e(r"."));
        assert_eq!(infinite(), e(r"(?s)."));
        assert_eq!(infinite(), e(r"[A-Za-z]"));
        assert_eq!(infinite(), e(r"[A-Z]"));
        assert_eq!(exact([""]), e(r"[A-Z]{0}"));
        assert_eq!(infinite(), e(r"[A-Z]?"));
        assert_eq!(infinite(), e(r"[A-Z]*"));
        assert_eq!(infinite(), e(r"[A-Z]+"));
        assert_eq!((seq([I("1")]), Seq::infinite()), e(r"1[A-Z]"));
        assert_eq!((seq([I("1")]), seq([I("2")])), e(r"1[A-Z]2"));
        assert_eq!((Seq::infinite(), seq([I("123")])), e(r"[A-Z]+123"));
        assert_eq!(infinite(), e(r"[A-Z]+123[A-Z]+"));
        assert_eq!(infinite(), e(r"1|[A-Z]|3"));
        assert_eq!(
            (seq([E("1"), I("2"), E("3")]), Seq::infinite()),
            e(r"1|2[A-Z]|3"),
        );
        assert_eq!(
            (Seq::infinite(), seq([E("1"), I("2"), E("3")])),
            e(r"1|[A-Z]2|3"),
        );
        assert_eq!(
            (seq([E("1"), I("2"), E("4")]), seq([E("1"), I("3"), E("4")])),
            e(r"1|2[A-Z]3|4"),
        );
        assert_eq!((Seq::infinite(), seq([I("2")])), e(r"(?:|1)[A-Z]2"));
        assert_eq!(inexact([I("a")], [I("z")]), e(r"a.z"));
    }

    // Like the 'anything' test, but it uses smaller limits in order to test
    // the logic for effectively aborting literal extraction when the seqs get
    // too big.
    #[test]
    fn anything_small_limits() {
        fn prefixes(pattern: &str) -> Seq {
            Extractor::new()
                .kind(ExtractKind::Prefix)
                .limit_total(10)
                .extract(&parse(pattern))
        }

        fn suffixes(pattern: &str) -> Seq {
            Extractor::new()
                .kind(ExtractKind::Suffix)
                .limit_total(10)
                .extract(&parse(pattern))
        }

        fn e(pattern: &str) -> (Seq, Seq) {
            (prefixes(pattern), suffixes(pattern))
        }

        assert_eq!(
            (
                seq([
                    I("aaa"),
                    I("aab"),
                    I("aba"),
                    I("abb"),
                    I("baa"),
                    I("bab"),
                    I("bba"),
                    I("bbb")
                ]),
                seq([
                    I("aaa"),
                    I("aab"),
                    I("aba"),
                    I("abb"),
                    I("baa"),
                    I("bab"),
                    I("bba"),
                    I("bbb")
                ])
            ),
            e(r"[ab]{3}{3}")
        );

        assert_eq!(infinite(), e(r"ab|cd|ef|gh|ij|kl|mn|op|qr|st|uv|wx|yz"));
    }

    #[test]
    fn empty() {
        assert_eq!(exact([""]), e(r""));
        assert_eq!(exact([""]), e(r"^"));
        assert_eq!(exact([""]), e(r"$"));
        assert_eq!(exact([""]), e(r"(?m:^)"));
        assert_eq!(exact([""]), e(r"(?m:$)"));
        assert_eq!(exact([""]), e(r"\b"));
        assert_eq!(exact([""]), e(r"\B"));
        assert_eq!(exact([""]), e(r"(?-u:\b)"));
        assert_eq!(exact([""]), e(r"(?-u:\B)"));
    }

    #[test]
    fn odds_and_ends() {
        assert_eq!((Seq::infinite(), seq([I("a")])), e(r".a"));
        assert_eq!((seq([I("a")]), Seq::infinite()), e(r"a."));
        assert_eq!(infinite(), e(r"a|."));
        assert_eq!(infinite(), e(r".|a"));

        let pat = r"M[ou]'?am+[ae]r .*([AEae]l[- ])?[GKQ]h?[aeu]+([dtz][dhz]?)+af[iy]";
        let expected = inexact(
            ["Mo'am", "Moam", "Mu'am", "Muam"].map(I),
            [
                "ddafi", "ddafy", "dhafi", "dhafy", "dzafi", "dzafy", "dafi",
                "dafy", "tdafi", "tdafy", "thafi", "thafy", "tzafi", "tzafy",
                "tafi", "tafy", "zdafi", "zdafy", "zhafi", "zhafy", "zzafi",
                "zzafy", "zafi", "zafy",
            ]
            .map(I),
        );
        assert_eq!(expected, e(pat));

        assert_eq!(
            (seq(["fn is_", "fn as_"].map(I)), Seq::infinite()),
            e(r"fn is_([A-Z]+)|fn as_([A-Z]+)"),
        );
        assert_eq!(
            inexact([I("foo")], [I("quux")]),
            e(r"foo[A-Z]+bar[A-Z]+quux")
        );
        assert_eq!(infinite(), e(r"[A-Z]+bar[A-Z]+"));
        assert_eq!(
            exact(["Sherlock Holmes"]),
            e(r"(?m)^Sherlock Holmes|Sherlock Holmes$")
        );

        assert_eq!(exact(["sa", "sb"]), e(r"\bs(?:[ab])"));
    }

    // This tests a specific regex along with some heuristic steps to reduce
    // the sequences extracted. This is meant to roughly correspond to the
    // types of heuristics used to shrink literal sets in practice. (Shrinking
    // is done because you want to balance "spend too much work looking for
    // too many literals" and "spend too much work processing false positive
    // matches from short literals.")
    #[test]
    #[cfg(feature = "unicode-case")]
    fn holmes() {
        let expected = inexact(
            ["HOL", "HOl", "HoL", "Hol", "hOL", "hOl", "hoL", "hol"].map(I),
            [
                "MES", "MEs", "Eſ", "MeS", "Mes", "eſ", "mES", "mEs", "meS",
                "mes",
            ]
            .map(I),
        );
        let (mut prefixes, mut suffixes) = e(r"(?i)Holmes");
        prefixes.keep_first_bytes(3);
        suffixes.keep_last_bytes(3);
        prefixes.minimize_by_preference();
        suffixes.minimize_by_preference();
        assert_eq!(expected, (prefixes, suffixes));
    }

    // This tests that we get some kind of literals extracted for a beefier
    // alternation with case insensitive mode enabled. At one point during
    // development, this returned nothing, and motivated some special case
    // code in Extractor::union to try and trim down the literal sequences
    // if the union would blow the limits set.
    #[test]
    #[cfg(feature = "unicode-case")]
    fn holmes_alt() {
        let mut pre =
            prefixes(r"(?i)Sherlock|Holmes|Watson|Irene|Adler|John|Baker");
        assert!(pre.len().unwrap() > 0);
        pre.optimize_for_prefix_by_preference();
        assert!(pre.len().unwrap() > 0);
    }

    // See: https://github.com/rust-lang/regex/security/advisories/GHSA-m5pq-gvj9-9vr8
    // See: CVE-2022-24713
    //
    // We test this here to ensure literal extraction completes in reasonable
    // time and isn't materially impacted by these sorts of pathological
    // repeats.
    #[test]
    fn crazy_repeats() {
        assert_eq!(inexact([I("")], [I("")]), e(r"(?:){4294967295}"));
        assert_eq!(
            inexact([I("")], [I("")]),
            e(r"(?:){64}{64}{64}{64}{64}{64}")
        );
        assert_eq!(inexact([I("")], [I("")]), e(r"x{0}{4294967295}"));
        assert_eq!(inexact([I("")], [I("")]), e(r"(?:|){4294967295}"));

        assert_eq!(
            inexact([E("")], [E("")]),
            e(r"(?:){8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}")
        );
        let repa = "a".repeat(100);
        assert_eq!(
            inexact([I(&repa)], [I(&repa)]),
            e(r"a{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}")
        );
    }

    #[test]
    fn huge() {
        let pat = r#"(?-u)
        2(?:
          [45]\d{3}|
          7(?:
            1[0-267]|
            2[0-289]|
            3[0-29]|
            4[01]|
            5[1-3]|
            6[013]|
            7[0178]|
            91
          )|
          8(?:
            0[125]|
            [139][1-6]|
            2[0157-9]|
            41|
            6[1-35]|
            7[1-5]|
            8[1-8]|
            90
          )|
          9(?:
            0[0-2]|
            1[0-4]|
            2[568]|
            3[3-6]|
            5[5-7]|
            6[0167]|
            7[15]|
            8[0146-9]
          )
        )\d{4}|
        3(?:
          12?[5-7]\d{2}|
          0(?:
            2(?:
              [025-79]\d|
              [348]\d{1,2}
            )|
            3(?:
              [2-4]\d|
              [56]\d?
            )
          )|
          2(?:
            1\d{2}|
            2(?:
              [12]\d|
              [35]\d{1,2}|
              4\d?
            )
          )|
          3(?:
            1\d{2}|
            2(?:
              [2356]\d|
              4\d{1,2}
            )
          )|
          4(?:
            1\d{2}|
            2(?:
              2\d{1,2}|
              [47]|
              5\d{2}
            )
          )|
          5(?:
            1\d{2}|
            29
          )|
          [67]1\d{2}|
          8(?:
            1\d{2}|
            2(?:
              2\d{2}|
              3|
              4\d
            )
          )
        )\d{3}|
        4(?:
          0(?:
            2(?:
              [09]\d|
              7
            )|
            33\d{2}
          )|
          1\d{3}|
          2(?:
            1\d{2}|
            2(?:
              [25]\d?|
              [348]\d|
              [67]\d{1,2}
            )
          )|
          3(?:
            1\d{2}(?:
              \d{2}
            )?|
            2(?:
              [045]\d|
              [236-9]\d{1,2}
            )|
            32\d{2}
          )|
          4(?:
            [18]\d{2}|
            2(?:
              [2-46]\d{2}|
              3
            )|
            5[25]\d{2}
          )|
          5(?:
            1\d{2}|
            2(?:
              3\d|
              5
            )
          )|
          6(?:
            [18]\d{2}|
            2(?:
              3(?:
                \d{2}
              )?|
              [46]\d{1,2}|
              5\d{2}|
              7\d
            )|
            5(?:
              3\d?|
              4\d|
              [57]\d{1,2}|
              6\d{2}|
              8
            )
          )|
          71\d{2}|
          8(?:
            [18]\d{2}|
            23\d{2}|
            54\d{2}
          )|
          9(?:
            [18]\d{2}|
            2[2-5]\d{2}|
            53\d{1,2}
          )
        )\d{3}|
        5(?:
          02[03489]\d{2}|
          1\d{2}|
          2(?:
            1\d{2}|
            2(?:
              2(?:
                \d{2}
              )?|
              [457]\d{2}
            )
          )|
          3(?:
            1\d{2}|
            2(?:
              [37](?:
                \d{2}
              )?|
              [569]\d{2}
            )
          )|
          4(?:
            1\d{2}|
            2[46]\d{2}
          )|
          5(?:
            1\d{2}|
            26\d{1,2}
          )|
          6(?:
            [18]\d{2}|
            2|
            53\d{2}
          )|
          7(?:
            1|
            24
          )\d{2}|
          8(?:
            1|
            26
          )\d{2}|
          91\d{2}
        )\d{3}|
        6(?:
          0(?:
            1\d{2}|
            2(?:
              3\d{2}|
              4\d{1,2}
            )
          )|
          2(?:
            2[2-5]\d{2}|
            5(?:
              [3-5]\d{2}|
              7
            )|
            8\d{2}
          )|
          3(?:
            1|
            2[3478]
          )\d{2}|
          4(?:
            1|
            2[34]
          )\d{2}|
          5(?:
            1|
            2[47]
          )\d{2}|
          6(?:
            [18]\d{2}|
            6(?:
              2(?:
                2\d|
                [34]\d{2}
              )|
              5(?:
                [24]\d{2}|
                3\d|
                5\d{1,2}
              )
            )
          )|
          72[2-5]\d{2}|
          8(?:
            1\d{2}|
            2[2-5]\d{2}
          )|
          9(?:
            1\d{2}|
            2[2-6]\d{2}
          )
        )\d{3}|
        7(?:
          (?:
            02|
            [3-589]1|
            6[12]|
            72[24]
          )\d{2}|
          21\d{3}|
          32
        )\d{3}|
        8(?:
          (?:
            4[12]|
            [5-7]2|
            1\d?
          )|
          (?:
            0|
            3[12]|
            [5-7]1|
            217
          )\d
        )\d{4}|
        9(?:
          [35]1|
          (?:
            [024]2|
            81
          )\d|
          (?:
            1|
            [24]1
          )\d{2}
        )\d{3}
        "#;
        // TODO: This is a good candidate of a seq of literals that could be
        // shrunk quite a bit and still be very productive with respect to
        // literal optimizations.
        let (prefixes, suffixes) = e(pat);
        assert!(!suffixes.is_finite());
        assert_eq!(Some(243), prefixes.len());
    }

    #[test]
    fn optimize() {
        // This gets a common prefix that isn't too short.
        let (p, s) =
            opt(["foobarfoobar", "foobar", "foobarzfoobar", "foobarfoobar"]);
        assert_eq!(seq([I("foobar")]), p);
        assert_eq!(seq([I("foobar")]), s);

        // This also finds a common prefix, but since it's only one byte, it
        // prefers the multiple literals.
        let (p, s) = opt(["abba", "akka", "abccba"]);
        assert_eq!(exact(["abba", "akka", "abccba"]), (p, s));

        let (p, s) = opt(["sam", "samwise"]);
        assert_eq!((seq([E("sam")]), seq([E("sam"), E("samwise")])), (p, s));

        // The empty string is poisonous, so our seq becomes infinite, even
        // though all literals are exact.
        let (p, s) = opt(["foobarfoo", "foo", "", "foozfoo", "foofoo"]);
        assert!(!p.is_finite());
        assert!(!s.is_finite());

        // A space is also poisonous, so our seq becomes infinite. But this
        // only gets triggered when we don't have a completely exact sequence.
        // When the sequence is exact, spaces are okay, since we presume that
        // any prefilter will match a space more quickly than the regex engine.
        // (When the sequence is exact, there's a chance of the prefilter being
        // used without needing the regex engine at all.)
        let mut p = seq([E("foobarfoo"), I("foo"), E(" "), E("foofoo")]);
        p.optimize_for_prefix_by_preference();
        assert!(!p.is_finite());
    }
}