1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
/*!
Provides literal extraction from `Hir` expressions.
An [`Extractor`] pulls literals out of [`Hir`] expressions and returns a
[`Seq`] of [`Literal`]s.
The purpose of literal extraction is generally to provide avenues for
optimizing regex searches. The main idea is that substring searches can be an
order of magnitude faster than a regex search. Therefore, if one can execute
a substring search to find candidate match locations and only run the regex
search at those locations, then it is possible for huge improvements in
performance to be realized.
With that said, literal optimizations are generally a black art because even
though substring search is generally faster, if the number of candidates
produced is high, then it can create a lot of overhead by ping-ponging between
the substring search and the regex search.
Here are some heuristics that might be used to help increase the chances of
effective literal optimizations:
* Stick to small [`Seq`]s. If you search for too many literals, it's likely
to lead to substring search that is only a little faster than a regex search,
and thus the overhead of using literal optimizations in the first place might
make things slower overall.
* The literals in your [`Seq`] shoudn't be too short. In general, longer is
better. A sequence corresponding to single bytes that occur frequently in the
haystack, for example, is probably a bad literal optimization because it's
likely to produce many false positive candidates. Longer literals are less
likely to match, and thus probably produce fewer false positives.
* If it's possible to estimate the approximate frequency of each byte according
to some pre-computed background distribution, it is possible to compute a score
of how "good" a `Seq` is. If a `Seq` isn't good enough, you might consider
skipping the literal optimization and just use the regex engine.
(It should be noted that there are always pathological cases that can make
any kind of literal optimization be a net slower result. This is why it
might be a good idea to be conservative, or to even provide a means for
literal optimizations to be dynamically disabled if they are determined to be
ineffective according to some measure.)
You're encouraged to explore the methods on [`Seq`], which permit shrinking
the size of sequences in a preference-order preserving fashion.
Finally, note that it isn't strictly necessary to use an [`Extractor`]. Namely,
an `Extractor` only uses public APIs of the [`Seq`] and [`Literal`] types,
so it is possible to implement your own extractor. For example, for n-grams
or "inner" literals (i.e., not prefix or suffix literals). The `Extractor`
is mostly responsible for the case analysis over `Hir` expressions. Much of
the "trickier" parts are how to combine literal sequences, and that is all
implemented on [`Seq`].
*/
use core::{cmp, mem};
use alloc::{vec, vec::Vec};
use crate::hir::{self, Hir};
/// Extracts prefix or suffix literal sequences from [`Hir`] expressions.
///
/// Literal extraction is based on the following observations:
///
/// * Many regexes start with one or a small number of literals.
/// * Substring search for literals is often much faster (sometimes by an order
/// of magnitude) than a regex search.
///
/// Thus, in many cases, one can search for literals to find candidate starting
/// locations of a match, and then only run the full regex engine at each such
/// location instead of over the full haystack.
///
/// The main downside of literal extraction is that it can wind up causing a
/// search to be slower overall. For example, if there are many matches or if
/// there are many candidates that don't ultimately lead to a match, then a
/// lot of overhead will be spent in shuffing back-and-forth between substring
/// search and the regex engine. This is the fundamental reason why literal
/// optimizations for regex patterns is sometimes considered a "black art."
///
/// # Look-around assertions
///
/// Literal extraction treats all look-around assertions as-if they match every
/// empty string. So for example, the regex `\bquux\b` will yield a sequence
/// containing a single exact literal `quux`. However, not all occurrences
/// of `quux` correspond to a match a of the regex. For example, `\bquux\b`
/// does not match `ZquuxZ` anywhere because `quux` does not fall on a word
/// boundary.
///
/// In effect, if your regex contains look-around assertions, then a match of
/// an exact literal does not necessarily mean the regex overall matches. So
/// you may still need to run the regex engine in such cases to confirm the
/// match.
///
/// The precise guarantee you get from a literal sequence is: if every literal
/// in the sequence is exact and the original regex contains zero look-around
/// assertions, then a preference-order multi-substring search of those
/// literals will precisely match a preference-order search of the original
/// regex.
///
/// # Example
///
/// This shows how to extract prefixes:
///
/// ```
/// use regex_syntax::{hir::literal::{Extractor, Literal, Seq}, parse};
///
/// let hir = parse(r"(a|b|c)(x|y|z)[A-Z]+foo")?;
/// let got = Extractor::new().extract(&hir);
/// // All literals returned are "inexact" because none of them reach the
/// // match state.
/// let expected = Seq::from_iter([
/// Literal::inexact("ax"),
/// Literal::inexact("ay"),
/// Literal::inexact("az"),
/// Literal::inexact("bx"),
/// Literal::inexact("by"),
/// Literal::inexact("bz"),
/// Literal::inexact("cx"),
/// Literal::inexact("cy"),
/// Literal::inexact("cz"),
/// ]);
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// This shows how to extract suffixes:
///
/// ```
/// use regex_syntax::{
/// hir::literal::{Extractor, ExtractKind, Literal, Seq},
/// parse,
/// };
///
/// let hir = parse(r"foo|[A-Z]+bar")?;
/// let got = Extractor::new().kind(ExtractKind::Suffix).extract(&hir);
/// // Since 'foo' gets to a match state, it is considered exact. But 'bar'
/// // does not because of the '[A-Z]+', and thus is marked inexact.
/// let expected = Seq::from_iter([
/// Literal::exact("foo"),
/// Literal::inexact("bar"),
/// ]);
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct Extractor {
kind: ExtractKind,
limit_class: usize,
limit_repeat: usize,
limit_literal_len: usize,
limit_total: usize,
}
impl Extractor {
/// Create a new extractor with a default configuration.
///
/// The extractor can be optionally configured before calling
/// [`Extractor::extract`] to get a literal sequence.
pub fn new() -> Extractor {
Extractor {
kind: ExtractKind::Prefix,
limit_class: 10,
limit_repeat: 10,
limit_literal_len: 100,
limit_total: 250,
}
}
/// Execute the extractor and return a sequence of literals.
pub fn extract(&self, hir: &Hir) -> Seq {
use crate::hir::HirKind::*;
match *hir.kind() {
Empty | Look(_) => Seq::singleton(self::Literal::exact(vec![])),
Literal(hir::Literal(ref bytes)) => {
let mut seq =
Seq::singleton(self::Literal::exact(bytes.to_vec()));
self.enforce_literal_len(&mut seq);
seq
}
Class(hir::Class::Unicode(ref cls)) => {
self.extract_class_unicode(cls)
}
Class(hir::Class::Bytes(ref cls)) => self.extract_class_bytes(cls),
Repetition(ref rep) => self.extract_repetition(rep),
Capture(hir::Capture { ref sub, .. }) => self.extract(sub),
Concat(ref hirs) => match self.kind {
ExtractKind::Prefix => self.extract_concat(hirs.iter()),
ExtractKind::Suffix => self.extract_concat(hirs.iter().rev()),
},
Alternation(ref hirs) => {
// Unlike concat, we always union starting from the beginning,
// since the beginning corresponds to the highest preference,
// which doesn't change based on forwards vs reverse.
self.extract_alternation(hirs.iter())
}
}
}
/// Set the kind of literal sequence to extract from an [`Hir`] expression.
///
/// The default is to extract prefixes, but suffixes can be selected
/// instead. The contract for prefixes is that every match of the
/// corresponding `Hir` must start with one of the literals in the sequence
/// returned. Moreover, the _order_ of the sequence returned corresponds to
/// the preference order.
///
/// Suffixes satisfy a similar contract in that every match of the
/// corresponding `Hir` must end with one of the literals in the sequence
/// returned. However, there is no guarantee that the literals are in
/// preference order.
///
/// Remember that a sequence can be infinite. For example, unless the
/// limits are configured to be impractically large, attempting to extract
/// prefixes (or suffixes) for the pattern `[A-Z]` will return an infinite
/// sequence. Generally speaking, if the sequence returned is infinite,
/// then it is presumed to be unwise to do prefix (or suffix) optimizations
/// for the pattern.
pub fn kind(&mut self, kind: ExtractKind) -> &mut Extractor {
self.kind = kind;
self
}
/// Configure a limit on the length of the sequence that is permitted for
/// a character class. If a character class exceeds this limit, then the
/// sequence returned for it is infinite.
///
/// This prevents classes like `[A-Z]` or `\pL` from getting turned into
/// huge and likely unproductive sequences of literals.
///
/// # Example
///
/// This example shows how this limit can be lowered to decrease the tolerance
/// for character classes being turned into literal sequences.
///
/// ```
/// use regex_syntax::{hir::literal::{Extractor, Seq}, parse};
///
/// let hir = parse(r"[0-9]")?;
///
/// let got = Extractor::new().extract(&hir);
/// let expected = Seq::new([
/// "0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
/// ]);
/// assert_eq!(expected, got);
///
/// // Now let's shrink the limit and see how that changes things.
/// let got = Extractor::new().limit_class(4).extract(&hir);
/// let expected = Seq::infinite();
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn limit_class(&mut self, limit: usize) -> &mut Extractor {
self.limit_class = limit;
self
}
/// Configure a limit on the total number of repetitions that is permitted
/// before literal extraction is stopped.
///
/// This is useful for limiting things like `(abcde){50}`, or more
/// insidiously, `(?:){1000000000}`. This limit prevents any one single
/// repetition from adding too much to a literal sequence.
///
/// With this limit set, repetitions that exceed it will be stopped and any
/// literals extracted up to that point will be made inexact.
///
/// # Example
///
/// This shows how to decrease the limit and compares it with the default.
///
/// ```
/// use regex_syntax::{hir::literal::{Extractor, Literal, Seq}, parse};
///
/// let hir = parse(r"(abc){8}")?;
///
/// let got = Extractor::new().extract(&hir);
/// let expected = Seq::new(["abcabcabcabcabcabcabcabc"]);
/// assert_eq!(expected, got);
///
/// // Now let's shrink the limit and see how that changes things.
/// let got = Extractor::new().limit_repeat(4).extract(&hir);
/// let expected = Seq::from_iter([
/// Literal::inexact("abcabcabcabc"),
/// ]);
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn limit_repeat(&mut self, limit: usize) -> &mut Extractor {
self.limit_repeat = limit;
self
}
/// Configure a limit on the maximum length of any literal in a sequence.
///
/// This is useful for limiting things like `(abcde){5}{5}{5}{5}`. While
/// each repetition or literal in that regex is small, when all the
/// repetitions are applied, one ends up with a literal of length `5^4 =
/// 625`.
///
/// With this limit set, literals that exceed it will be made inexact and
/// thus prevented from growing.
///
/// # Example
///
/// This shows how to decrease the limit and compares it with the default.
///
/// ```
/// use regex_syntax::{hir::literal::{Extractor, Literal, Seq}, parse};
///
/// let hir = parse(r"(abc){2}{2}{2}")?;
///
/// let got = Extractor::new().extract(&hir);
/// let expected = Seq::new(["abcabcabcabcabcabcabcabc"]);
/// assert_eq!(expected, got);
///
/// // Now let's shrink the limit and see how that changes things.
/// let got = Extractor::new().limit_literal_len(14).extract(&hir);
/// let expected = Seq::from_iter([
/// Literal::inexact("abcabcabcabcab"),
/// ]);
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn limit_literal_len(&mut self, limit: usize) -> &mut Extractor {
self.limit_literal_len = limit;
self
}
/// Configure a limit on the total number of literals that will be
/// returned.
///
/// This is useful as a practical measure for avoiding the creation of
/// large sequences of literals. While the extractor will automatically
/// handle local creations of large sequences (for example, `[A-Z]` yields
/// an infinite sequence by default), large sequences can be created
/// through non-local means as well.
///
/// For example, `[ab]{3}{3}` would yield a sequence of length `512 = 2^9`
/// despite each of the repetitions being small on their own. This limit
/// thus represents a "catch all" for avoiding locally small sequences from
/// combining into large sequences.
///
/// # Example
///
/// This example shows how reducing the limit will change the literal
/// sequence returned.
///
/// ```
/// use regex_syntax::{hir::literal::{Extractor, Literal, Seq}, parse};
///
/// let hir = parse(r"[ab]{2}{2}")?;
///
/// let got = Extractor::new().extract(&hir);
/// let expected = Seq::new([
/// "aaaa", "aaab", "aaba", "aabb",
/// "abaa", "abab", "abba", "abbb",
/// "baaa", "baab", "baba", "babb",
/// "bbaa", "bbab", "bbba", "bbbb",
/// ]);
/// assert_eq!(expected, got);
///
/// // The default limit is not too big, but big enough to extract all
/// // literals from '[ab]{2}{2}'. If we shrink the limit to less than 16,
/// // then we'll get a truncated set. Notice that it returns a sequence of
/// // length 4 even though our limit was 10. This is because the sequence
/// // is difficult to increase without blowing the limit. Notice also
/// // that every literal in the sequence is now inexact because they were
/// // stripped of some suffix.
/// let got = Extractor::new().limit_total(10).extract(&hir);
/// let expected = Seq::from_iter([
/// Literal::inexact("aa"),
/// Literal::inexact("ab"),
/// Literal::inexact("ba"),
/// Literal::inexact("bb"),
/// ]);
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn limit_total(&mut self, limit: usize) -> &mut Extractor {
self.limit_total = limit;
self
}
/// Extract a sequence from the given concatenation. Sequences from each of
/// the child HIR expressions are combined via cross product.
///
/// This short circuits once the cross product turns into a sequence
/// containing only inexact literals.
fn extract_concat<'a, I: Iterator<Item = &'a Hir>>(&self, it: I) -> Seq {
let mut seq = Seq::singleton(self::Literal::exact(vec![]));
for hir in it {
// If every element in the sequence is inexact, then a cross
// product will always be a no-op. Thus, there is nothing else we
// can add to it and can quit early. Note that this also includes
// infinite sequences.
if seq.is_inexact() {
break;
}
// Note that 'cross' also dispatches based on whether we're
// extracting prefixes or suffixes.
seq = self.cross(seq, &mut self.extract(hir));
}
seq
}
/// Extract a sequence from the given alternation.
///
/// This short circuits once the union turns into an infinite sequence.
fn extract_alternation<'a, I: Iterator<Item = &'a Hir>>(
&self,
it: I,
) -> Seq {
let mut seq = Seq::empty();
for hir in it {
// Once our 'seq' is infinite, every subsequent union
// operation on it will itself always result in an
// infinite sequence. Thus, it can never change and we can
// short-circuit.
if !seq.is_finite() {
break;
}
seq = self.union(seq, &mut self.extract(hir));
}
seq
}
/// Extract a sequence of literals from the given repetition. We do our
/// best, Some examples:
///
/// 'a*' => [inexact(a), exact("")]
/// 'a*?' => [exact(""), inexact(a)]
/// 'a+' => [inexact(a)]
/// 'a{3}' => [exact(aaa)]
/// 'a{3,5} => [inexact(aaa)]
///
/// The key here really is making sure we get the 'inexact' vs 'exact'
/// attributes correct on each of the literals we add. For example, the
/// fact that 'a*' gives us an inexact 'a' and an exact empty string means
/// that a regex like 'ab*c' will result in [inexact(ab), exact(ac)]
/// literals being extracted, which might actually be a better prefilter
/// than just 'a'.
fn extract_repetition(&self, rep: &hir::Repetition) -> Seq {
let mut subseq = self.extract(&rep.sub);
match *rep {
hir::Repetition { min: 0, max, greedy, .. } => {
// When 'max=1', we can retain exactness, since 'a?' is
// equivalent to 'a|'. Similarly below, 'a??' is equivalent to
// '|a'.
if max != Some(1) {
subseq.make_inexact();
}
let mut empty = Seq::singleton(Literal::exact(vec![]));
if !greedy {
mem::swap(&mut subseq, &mut empty);
}
self.union(subseq, &mut empty)
}
hir::Repetition { min, max: Some(max), .. } if min == max => {
assert!(min > 0); // handled above
let limit =
u32::try_from(self.limit_repeat).unwrap_or(u32::MAX);
let mut seq = Seq::singleton(Literal::exact(vec![]));
for _ in 0..cmp::min(min, limit) {
if seq.is_inexact() {
break;
}
seq = self.cross(seq, &mut subseq.clone());
}
if usize::try_from(min).is_err() || min > limit {
seq.make_inexact();
}
seq
}
hir::Repetition { min, max: Some(max), .. } if min < max => {
assert!(min > 0); // handled above
let limit =
u32::try_from(self.limit_repeat).unwrap_or(u32::MAX);
let mut seq = Seq::singleton(Literal::exact(vec![]));
for _ in 0..cmp::min(min, limit) {
if seq.is_inexact() {
break;
}
seq = self.cross(seq, &mut subseq.clone());
}
seq.make_inexact();
seq
}
hir::Repetition { .. } => {
subseq.make_inexact();
subseq
}
}
}
/// Convert the given Unicode class into a sequence of literals if the
/// class is small enough. If the class is too big, return an infinite
/// sequence.
fn extract_class_unicode(&self, cls: &hir::ClassUnicode) -> Seq {
if self.class_over_limit_unicode(cls) {
return Seq::infinite();
}
let mut seq = Seq::empty();
for r in cls.iter() {
for ch in r.start()..=r.end() {
seq.push(Literal::from(ch));
}
}
self.enforce_literal_len(&mut seq);
seq
}
/// Convert the given byte class into a sequence of literals if the class
/// is small enough. If the class is too big, return an infinite sequence.
fn extract_class_bytes(&self, cls: &hir::ClassBytes) -> Seq {
if self.class_over_limit_bytes(cls) {
return Seq::infinite();
}
let mut seq = Seq::empty();
for r in cls.iter() {
for b in r.start()..=r.end() {
seq.push(Literal::from(b));
}
}
self.enforce_literal_len(&mut seq);
seq
}
/// Returns true if the given Unicode class exceeds the configured limits
/// on this extractor.
fn class_over_limit_unicode(&self, cls: &hir::ClassUnicode) -> bool {
let mut count = 0;
for r in cls.iter() {
if count > self.limit_class {
return true;
}
count += r.len();
}
count > self.limit_class
}
/// Returns true if the given byte class exceeds the configured limits on
/// this extractor.
fn class_over_limit_bytes(&self, cls: &hir::ClassBytes) -> bool {
let mut count = 0;
for r in cls.iter() {
if count > self.limit_class {
return true;
}
count += r.len();
}
count > self.limit_class
}
/// Compute the cross product of the two sequences if the result would be
/// within configured limits. Otherwise, make `seq2` infinite and cross the
/// infinite sequence with `seq1`.
fn cross(&self, mut seq1: Seq, seq2: &mut Seq) -> Seq {
if seq1.max_cross_len(seq2).map_or(false, |len| len > self.limit_total)
{
seq2.make_infinite();
}
if let ExtractKind::Suffix = self.kind {
seq1.cross_reverse(seq2);
} else {
seq1.cross_forward(seq2);
}
assert!(seq1.len().map_or(true, |x| x <= self.limit_total));
self.enforce_literal_len(&mut seq1);
seq1
}
/// Union the two sequences if the result would be within configured
/// limits. Otherwise, make `seq2` infinite and union the infinite sequence
/// with `seq1`.
fn union(&self, mut seq1: Seq, seq2: &mut Seq) -> Seq {
if seq1.max_union_len(seq2).map_or(false, |len| len > self.limit_total)
{
// We try to trim our literal sequences to see if we can make
// room for more literals. The idea is that we'd rather trim down
// literals already in our sequence if it means we can add a few
// more and retain a finite sequence. Otherwise, we'll union with
// an infinite sequence and that infects everything and effectively
// stops literal extraction in its tracks.
//
// We do we keep 4 bytes here? Well, it's a bit of an abstraction
// leakage. Downstream, the literals may wind up getting fed to
// the Teddy algorithm, which supports searching literals up to
// length 4. So that's why we pick that number here. Arguably this
// should be a tuneable parameter, but it seems a little tricky to
// describe. And I'm still unsure if this is the right way to go
// about culling literal sequences.
match self.kind {
ExtractKind::Prefix => {
seq1.keep_first_bytes(4);
seq2.keep_first_bytes(4);
}
ExtractKind::Suffix => {
seq1.keep_last_bytes(4);
seq2.keep_last_bytes(4);
}
}
seq1.dedup();
seq2.dedup();
if seq1
.max_union_len(seq2)
.map_or(false, |len| len > self.limit_total)
{
seq2.make_infinite();
}
}
seq1.union(seq2);
assert!(seq1.len().map_or(true, |x| x <= self.limit_total));
seq1
}
/// Applies the literal length limit to the given sequence. If none of the
/// literals in the sequence exceed the limit, then this is a no-op.
fn enforce_literal_len(&self, seq: &mut Seq) {
let len = self.limit_literal_len;
match self.kind {
ExtractKind::Prefix => seq.keep_first_bytes(len),
ExtractKind::Suffix => seq.keep_last_bytes(len),
}
}
}
impl Default for Extractor {
fn default() -> Extractor {
Extractor::new()
}
}
/// The kind of literals to extract from an [`Hir`] expression.
///
/// The default extraction kind is `Prefix`.
#[non_exhaustive]
#[derive(Clone, Debug)]
pub enum ExtractKind {
/// Extracts only prefix literals from a regex.
Prefix,
/// Extracts only suffix literals from a regex.
///
/// Note that the sequence returned by suffix literals currently may
/// not correctly represent leftmost-first or "preference" order match
/// semantics.
Suffix,
}
impl ExtractKind {
/// Returns true if this kind is the `Prefix` variant.
pub fn is_prefix(&self) -> bool {
matches!(*self, ExtractKind::Prefix)
}
/// Returns true if this kind is the `Suffix` variant.
pub fn is_suffix(&self) -> bool {
matches!(*self, ExtractKind::Suffix)
}
}
impl Default for ExtractKind {
fn default() -> ExtractKind {
ExtractKind::Prefix
}
}
/// A sequence of literals.
///
/// A `Seq` is very much like a set in that it represents a union of its
/// members. That is, it corresponds to a set of literals where at least one
/// must match in order for a particular [`Hir`] expression to match. (Whether
/// this corresponds to the entire `Hir` expression, a prefix of it or a suffix
/// of it depends on how the `Seq` was extracted from the `Hir`.)
///
/// It is also unlike a set in that multiple identical literals may appear,
/// and that the order of the literals in the `Seq` matters. For example, if
/// the sequence is `[sam, samwise]` and leftmost-first matching is used, then
/// `samwise` can never match and the sequence is equivalent to `[sam]`.
///
/// # States of a sequence
///
/// A `Seq` has a few different logical states to consider:
///
/// * The sequence can represent "any" literal. When this happens, the set does
/// not have a finite size. The purpose of this state is to inhibit callers
/// from making assumptions about what literals are required in order to match
/// a particular [`Hir`] expression. Generally speaking, when a set is in this
/// state, literal optimizations are inhibited. A good example of a regex that
/// will cause this sort of set to apppear is `[A-Za-z]`. The character class
/// is just too big (and also too narrow) to be usefully expanded into 52
/// different literals. (Note that the decision for when a seq should become
/// infinite is determined by the caller. A seq itself has no hard-coded
/// limits.)
/// * The sequence can be empty, in which case, it is an affirmative statement
/// that there are no literals that can match the corresponding `Hir`.
/// Consequently, the `Hir` never matches any input. For example, `[a&&b]`.
/// * The sequence can be non-empty, in which case, at least one of the
/// literals must match in order for the corresponding `Hir` to match.
///
/// # Example
///
/// This example shows how literal sequences can be simplified by stripping
/// suffixes and minimizing while maintaining preference order.
///
/// ```
/// use regex_syntax::hir::literal::{Literal, Seq};
///
/// let mut seq = Seq::new(&[
/// "farm",
/// "appliance",
/// "faraway",
/// "apple",
/// "fare",
/// "gap",
/// "applicant",
/// "applaud",
/// ]);
/// seq.keep_first_bytes(3);
/// seq.minimize_by_preference();
/// // Notice that 'far' comes before 'app', which matches the order in the
/// // original sequence. This guarantees that leftmost-first semantics are
/// // not altered by simplifying the set.
/// let expected = Seq::from_iter([
/// Literal::inexact("far"),
/// Literal::inexact("app"),
/// Literal::exact("gap"),
/// ]);
/// assert_eq!(expected, seq);
/// ```
#[derive(Clone, Eq, PartialEq)]
pub struct Seq {
/// The members of this seq.
///
/// When `None`, the seq represents all possible literals. That is, it
/// prevents one from making assumptions about specific literals in the
/// seq, and forces one to treat it as if any literal might be in the seq.
///
/// Note that `Some(vec![])` is valid and corresponds to the empty seq of
/// literals, i.e., a regex that can never match. For example, `[a&&b]`.
/// It is distinct from `Some(vec![""])`, which corresponds to the seq
/// containing an empty string, which matches at every position.
literals: Option<Vec<Literal>>,
}
impl Seq {
/// Returns an empty sequence.
///
/// An empty sequence matches zero literals, and thus corresponds to a
/// regex that itself can never match.
#[inline]
pub fn empty() -> Seq {
Seq { literals: Some(vec![]) }
}
/// Returns a sequence of literals without a finite size and may contain
/// any literal.
///
/// A sequence without finite size does not reveal anything about the
/// characteristics of the literals in its set. There are no fixed prefixes
/// or suffixes, nor are lower or upper bounds on the length of the literals
/// in the set known.
///
/// This is useful to represent constructs in a regex that are "too big"
/// to useful represent as a sequence of literals. For example, `[A-Za-z]`.
/// When sequences get too big, they lose their discriminating nature and
/// are more likely to produce false positives, which in turn makes them
/// less likely to speed up searches.
///
/// More pragmatically, for many regexes, enumerating all possible literals
/// is itself not possible or might otherwise use too many resources. So
/// constraining the size of sets during extraction is a practical trade
/// off to make.
#[inline]
pub fn infinite() -> Seq {
Seq { literals: None }
}
/// Returns a sequence containing a single literal.
#[inline]
pub fn singleton(lit: Literal) -> Seq {
Seq { literals: Some(vec![lit]) }
}
/// Returns a sequence of exact literals from the given byte strings.
#[inline]
pub fn new<I, B>(it: I) -> Seq
where
I: IntoIterator<Item = B>,
B: AsRef<[u8]>,
{
it.into_iter().map(|b| Literal::exact(b.as_ref())).collect()
}
/// If this is a finite sequence, return its members as a slice of
/// literals.
///
/// The slice returned may be empty, in which case, there are no literals
/// that can match this sequence.
#[inline]
pub fn literals(&self) -> Option<&[Literal]> {
self.literals.as_deref()
}
/// Push a literal to the end of this sequence.
///
/// If this sequence is not finite, then this is a no-op.
///
/// Similarly, if the most recently added item of this sequence is
/// equivalent to the literal given, then it is not added. This reflects
/// a `Seq`'s "set like" behavior, and represents a practical trade off.
/// Namely, there is never any need to have two adjacent and equivalent
/// literals in the same sequence, _and_ it is easy to detect in some
/// cases.
#[inline]
pub fn push(&mut self, lit: Literal) {
let lits = match self.literals {
None => return,
Some(ref mut lits) => lits,
};
if lits.last().map_or(false, |m| m == &lit) {
return;
}
lits.push(lit);
}
/// Make all of the literals in this sequence inexact.
///
/// This is a no-op if this sequence is not finite.
#[inline]
pub fn make_inexact(&mut self) {
let lits = match self.literals {
None => return,
Some(ref mut lits) => lits,
};
for lit in lits.iter_mut() {
lit.make_inexact();
}
}
/// Converts this sequence to an infinite sequence.
///
/// This is a no-op if the sequence is already infinite.
#[inline]
pub fn make_infinite(&mut self) {
self.literals = None;
}
/// Modify this sequence to contain the cross product between it and the
/// sequence given.
///
/// The cross product only considers literals in this sequence that are
/// exact. That is, inexact literals are not extended.
///
/// The literals are always drained from `other`, even if none are used.
/// This permits callers to reuse the sequence allocation elsewhere.
///
/// If this sequence is infinite, then this is a no-op, regardless of what
/// `other` contains (and in this case, the literals are still drained from
/// `other`). If `other` is infinite and this sequence is finite, then this
/// is a no-op, unless this sequence contains a zero-length literal. In
/// which case, the infiniteness of `other` infects this sequence, and this
/// sequence is itself made infinite.
///
/// Like [`Seq::union`], this may attempt to deduplicate literals. See
/// [`Seq::dedup`] for how deduplication deals with exact and inexact
/// literals.
///
/// # Example
///
/// This example shows basic usage and how exact and inexact literals
/// interact.
///
/// ```
/// use regex_syntax::hir::literal::{Literal, Seq};
///
/// let mut seq1 = Seq::from_iter([
/// Literal::exact("foo"),
/// Literal::inexact("bar"),
/// ]);
/// let mut seq2 = Seq::from_iter([
/// Literal::inexact("quux"),
/// Literal::exact("baz"),
/// ]);
/// seq1.cross_forward(&mut seq2);
///
/// // The literals are pulled out of seq2.
/// assert_eq!(Some(0), seq2.len());
///
/// let expected = Seq::from_iter([
/// Literal::inexact("fooquux"),
/// Literal::exact("foobaz"),
/// Literal::inexact("bar"),
/// ]);
/// assert_eq!(expected, seq1);
/// ```
///
/// This example shows the behavior of when `other` is an infinite
/// sequence.
///
/// ```
/// use regex_syntax::hir::literal::{Literal, Seq};
///
/// let mut seq1 = Seq::from_iter([
/// Literal::exact("foo"),
/// Literal::inexact("bar"),
/// ]);
/// let mut seq2 = Seq::infinite();
/// seq1.cross_forward(&mut seq2);
///
/// // When seq2 is infinite, cross product doesn't add anything, but
/// // ensures all members of seq1 are inexact.
/// let expected = Seq::from_iter([
/// Literal::inexact("foo"),
/// Literal::inexact("bar"),
/// ]);
/// assert_eq!(expected, seq1);
/// ```
///
/// This example is like the one above, but shows what happens when this
/// sequence contains an empty string. In this case, an infinite `other`
/// sequence infects this sequence (because the empty string means that
/// there are no finite prefixes):
///
/// ```
/// use regex_syntax::hir::literal::{Literal, Seq};
///
/// let mut seq1 = Seq::from_iter([
/// Literal::exact("foo"),
/// Literal::exact(""), // inexact provokes same behavior
/// Literal::inexact("bar"),
/// ]);
/// let mut seq2 = Seq::infinite();
/// seq1.cross_forward(&mut seq2);
///
/// // seq1 is now infinite!
/// assert!(!seq1.is_finite());
/// ```
///
/// This example shows the behavior of this sequence is infinite.
///
/// ```
/// use regex_syntax::hir::literal::{Literal, Seq};
///
/// let mut seq1 = Seq::infinite();
/// let mut seq2 = Seq::from_iter([
/// Literal::exact("foo"),
/// Literal::inexact("bar"),
/// ]);
/// seq1.cross_forward(&mut seq2);
///
/// // seq1 remains unchanged.
/// assert!(!seq1.is_finite());
/// // Even though the literals in seq2 weren't used, it was still drained.
/// assert_eq!(Some(0), seq2.len());
/// ```
#[inline]
pub fn cross_forward(&mut self, other: &mut Seq) {
let (lits1, lits2) = match self.cross_preamble(other) {
None => return,
Some((lits1, lits2)) => (lits1, lits2),
};
let newcap = lits1.len().saturating_mul(lits2.len());
for selflit in mem::replace(lits1, Vec::with_capacity(newcap)) {
if !selflit.is_exact() {
lits1.push(selflit);
continue;
}
for otherlit in lits2.iter() {
let mut newlit = Literal::exact(Vec::with_capacity(
selflit.len() + otherlit.len(),
));
newlit.extend(&selflit);
newlit.extend(&otherlit);
if !otherlit.is_exact() {
newlit.make_inexact();
}
lits1.push(newlit);
}
}
lits2.drain(..);
self.dedup();
}
/// Modify this sequence to contain the cross product between it and
/// the sequence given, where the sequences are treated as suffixes
/// instead of prefixes. Namely, the sequence `other` is *prepended*
/// to `self` (as opposed to `other` being *appended* to `self` in
/// [`Seq::cross_forward`]).
///
/// The cross product only considers literals in this sequence that are
/// exact. That is, inexact literals are not extended.
///
/// The literals are always drained from `other`, even if none are used.
/// This permits callers to reuse the sequence allocation elsewhere.
///
/// If this sequence is infinite, then this is a no-op, regardless of what
/// `other` contains (and in this case, the literals are still drained from
/// `other`). If `other` is infinite and this sequence is finite, then this
/// is a no-op, unless this sequence contains a zero-length literal. In
/// which case, the infiniteness of `other` infects this sequence, and this
/// sequence is itself made infinite.
///
/// Like [`Seq::union`], this may attempt to deduplicate literals. See
/// [`Seq::dedup`] for how deduplication deals with exact and inexact
/// literals.
///
/// # Example
///
/// This example shows basic usage and how exact and inexact literals
/// interact.
///
/// ```
/// use regex_syntax::hir::literal::{Literal, Seq};
///
/// let mut seq1 = Seq::from_iter([
/// Literal::exact("foo"),
/// Literal::inexact("bar"),
/// ]);
/// let mut seq2 = Seq::from_iter([
/// Literal::inexact("quux"),
/// Literal::exact("baz"),
/// ]);
/// seq1.cross_reverse(&mut seq2);
///
/// // The literals are pulled out of seq2.
/// assert_eq!(Some(0), seq2.len());
///
/// let expected = Seq::from_iter([
/// Literal::inexact("quuxfoo"),
/// Literal::inexact("bar"),
/// Literal::exact("bazfoo"),
/// ]);
/// assert_eq!(expected, seq1);
/// ```
///
/// This example shows the behavior of when `other` is an infinite
/// sequence.
///
/// ```
/// use regex_syntax::hir::literal::{Literal, Seq};
///
/// let mut seq1 = Seq::from_iter([
/// Literal::exact("foo"),
/// Literal::inexact("bar"),
/// ]);
/// let mut seq2 = Seq::infinite();
/// seq1.cross_reverse(&mut seq2);
///
/// // When seq2 is infinite, cross product doesn't add anything, but
/// // ensures all members of seq1 are inexact.
/// let expected = Seq::from_iter([
/// Literal::inexact("foo"),
/// Literal::inexact("bar"),
/// ]);
/// assert_eq!(expected, seq1);
/// ```
///
/// This example is like the one above, but shows what happens when this
/// sequence contains an empty string. In this case, an infinite `other`
/// sequence infects this sequence (because the empty string means that
/// there are no finite suffixes):
///
/// ```
/// use regex_syntax::hir::literal::{Literal, Seq};
///
/// let mut seq1 = Seq::from_iter([
/// Literal::exact("foo"),
/// Literal::exact(""), // inexact provokes same behavior
/// Literal::inexact("bar"),
/// ]);
/// let mut seq2 = Seq::infinite();
/// seq1.cross_reverse(&mut seq2);
///
/// // seq1 is now infinite!
/// assert!(!seq1.is_finite());
/// ```
///
/// This example shows the behavior when this sequence is infinite.
///
/// ```
/// use regex_syntax::hir::literal::{Literal, Seq};
///
/// let mut seq1 = Seq::infinite();
/// let mut seq2 = Seq::from_iter([
/// Literal::exact("foo"),
/// Literal::inexact("bar"),
/// ]);
/// seq1.cross_reverse(&mut seq2);
///
/// // seq1 remains unchanged.
/// assert!(!seq1.is_finite());
/// // Even though the literals in seq2 weren't used, it was still drained.
/// assert_eq!(Some(0), seq2.len());
/// ```
#[inline]
pub fn cross_reverse(&mut self, other: &mut Seq) {
let (lits1, lits2) = match self.cross_preamble(other) {
None => return,
Some((lits1, lits2)) => (lits1, lits2),
};
// We basically proceed as we do in 'cross_forward' at this point,
// except that the outer loop is now 'other' and the inner loop is now
// 'self'. That's because 'self' corresponds to suffixes and 'other'
// corresponds to the sequence we want to *prepend* to the suffixes.
let newcap = lits1.len().saturating_mul(lits2.len());
let selflits = mem::replace(lits1, Vec::with_capacity(newcap));
for (i, otherlit) in lits2.drain(..).enumerate() {
for selflit in selflits.iter() {
if !selflit.is_exact() {
// If the suffix isn't exact, then we can't prepend
// anything to it. However, we still want to keep it. But
// we only want to keep one of them, to avoid duplication.
// (The duplication is okay from a correctness perspective,
// but wasteful.)
if i == 0 {
lits1.push(selflit.clone());
}
continue;
}
let mut newlit = Literal::exact(Vec::with_capacity(
otherlit.len() + selflit.len(),
));
newlit.extend(&otherlit);
newlit.extend(&selflit);
if !otherlit.is_exact() {
newlit.make_inexact();
}
lits1.push(newlit);
}
}
self.dedup();
}
/// A helper function the corresponds to the subtle preamble for both
/// `cross_forward` and `cross_reverse`. In effect, it handles the cases
/// of infinite sequences for both `self` and `other`, as well as ensuring
/// that literals from `other` are drained even if they aren't used.
fn cross_preamble<'a>(
&'a mut self,
other: &'a mut Seq,
) -> Option<(&'a mut Vec<Literal>, &'a mut Vec<Literal>)> {
let lits2 = match other.literals {
None => {
// If our current seq contains the empty string and the seq
// we're adding matches any literal, then it follows that the
// current seq must now also match any literal.
//
// Otherwise, we just have to make sure everything in this
// sequence is inexact.
if self.min_literal_len() == Some(0) {
*self = Seq::infinite();
} else {
self.make_inexact();
}
return None;
}
Some(ref mut lits) => lits,
};
let lits1 = match self.literals {
None => {
// If we aren't going to make it to the end of this routine
// where lits2 is drained, then we need to do it now.
lits2.drain(..);
return None;
}
Some(ref mut lits) => lits,
};
Some((lits1, lits2))
}
/// Unions the `other` sequence into this one.
///
/// The literals are always drained out of the given `other` sequence,
/// even if they are being unioned into an infinite sequence. This permits
/// the caller to reuse the `other` sequence in another context.
///
/// Some literal deduping may be performed. If any deduping happens,
/// any leftmost-first or "preference" order match semantics will be
/// preserved.
///
/// # Example
///
/// This example shows basic usage.
///
/// ```
/// use regex_syntax::hir::literal::Seq;
///
/// let mut seq1 = Seq::new(&["foo", "bar"]);
/// let mut seq2 = Seq::new(&["bar", "quux", "foo"]);
/// seq1.union(&mut seq2);
///
/// // The literals are pulled out of seq2.
/// assert_eq!(Some(0), seq2.len());
///
/// // Adjacent literals are deduped, but non-adjacent literals may not be.
/// assert_eq!(Seq::new(&["foo", "bar", "quux", "foo"]), seq1);
/// ```
///
/// This example shows that literals are drained from `other` even when
/// they aren't necessarily used.
///
/// ```
/// use regex_syntax::hir::literal::Seq;
///
/// let mut seq1 = Seq::infinite();
/// // Infinite sequences have no finite length.
/// assert_eq!(None, seq1.len());
///
/// let mut seq2 = Seq::new(&["bar", "quux", "foo"]);
/// seq1.union(&mut seq2);
///
/// // seq1 is still infinite and seq2 has been drained.
/// assert_eq!(None, seq1.len());
/// assert_eq!(Some(0), seq2.len());
/// ```
#[inline]
pub fn union(&mut self, other: &mut Seq) {
let lits2 = match other.literals {
None => {
// Unioning with an infinite sequence always results in an
// infinite sequence.
self.make_infinite();
return;
}
Some(ref mut lits) => lits.drain(..),
};
let lits1 = match self.literals {
None => return,
Some(ref mut lits) => lits,
};
lits1.extend(lits2);
self.dedup();
}
/// Unions the `other` sequence into this one by splice the `other`
/// sequence at the position of the first zero-length literal.
///
/// This is useful for preserving preference order semantics when combining
/// two literal sequences. For example, in the regex `(a||f)+foo`, the
/// correct preference order prefix sequence is `[a, foo, f]`.
///
/// The literals are always drained out of the given `other` sequence,
/// even if they are being unioned into an infinite sequence. This permits
/// the caller to reuse the `other` sequence in another context. Note that
/// the literals are drained even if no union is performed as well, i.e.,
/// when this sequence does not contain a zero-length literal.
///
/// Some literal deduping may be performed. If any deduping happens,
/// any leftmost-first or "preference" order match semantics will be
/// preserved.
///
/// # Example
///
/// This example shows basic usage.
///
/// ```
/// use regex_syntax::hir::literal::Seq;
///
/// let mut seq1 = Seq::new(&["a", "", "f", ""]);
/// let mut seq2 = Seq::new(&["foo"]);
/// seq1.union_into_empty(&mut seq2);
///
/// // The literals are pulled out of seq2.
/// assert_eq!(Some(0), seq2.len());
/// // 'foo' gets spliced into seq1 where the first empty string occurs.
/// assert_eq!(Seq::new(&["a", "foo", "f"]), seq1);
/// ```
///
/// This example shows that literals are drained from `other` even when
/// they aren't necessarily used.
///
/// ```
/// use regex_syntax::hir::literal::Seq;
///
/// let mut seq1 = Seq::new(&["foo", "bar"]);
/// let mut seq2 = Seq::new(&["bar", "quux", "foo"]);
/// seq1.union_into_empty(&mut seq2);
///
/// // seq1 has no zero length literals, so no splicing happens.
/// assert_eq!(Seq::new(&["foo", "bar"]), seq1);
/// // Even though no splicing happens, seq2 is still drained.
/// assert_eq!(Some(0), seq2.len());
/// ```
#[inline]
pub fn union_into_empty(&mut self, other: &mut Seq) {
let lits2 = other.literals.as_mut().map(|lits| lits.drain(..));
let lits1 = match self.literals {
None => return,
Some(ref mut lits) => lits,
};
let first_empty = match lits1.iter().position(|m| m.is_empty()) {
None => return,
Some(i) => i,
};
let lits2 = match lits2 {
None => {
// Note that we are only here if we've found an empty literal,
// which implies that an infinite sequence infects this seq and
// also turns it into an infinite sequence.
self.literals = None;
return;
}
Some(lits) => lits,
};
// Clearing out the empties needs to come before the splice because
// the splice might add more empties that we don't want to get rid
// of. Since we're splicing into the position of the first empty, the
// 'first_empty' position computed above is still correct.
lits1.retain(|m| !m.is_empty());
lits1.splice(first_empty..first_empty, lits2);
self.dedup();
}
/// Deduplicate adjacent equivalent literals in this sequence.
///
/// If adjacent literals are equivalent strings but one is exact and the
/// other inexact, the inexact literal is kept and the exact one is
/// removed.
///
/// Deduping an infinite sequence is a no-op.
///
/// # Example
///
/// This example shows how literals that are duplicate byte strings but
/// are not equivalent with respect to exactness are resolved.
///
/// ```
/// use regex_syntax::hir::literal::{Literal, Seq};
///
/// let mut seq = Seq::from_iter([
/// Literal::exact("foo"),
/// Literal::inexact("foo"),
/// ]);
/// seq.dedup();
///
/// assert_eq!(Seq::from_iter([Literal::inexact("foo")]), seq);
/// ```
#[inline]
pub fn dedup(&mut self) {
if let Some(ref mut lits) = self.literals {
lits.dedup_by(|lit1, lit2| {
if lit1.as_bytes() != lit2.as_bytes() {
return false;
}
if lit1.is_exact() != lit2.is_exact() {
lit1.make_inexact();
lit2.make_inexact();
}
true
});
}
}
/// Sorts this sequence of literals lexicographically.
///
/// Note that if, before sorting, if a literal that is a prefix of another
/// literal appears after it, then after sorting, the sequence will not
/// represent the same preference order match semantics. For example,
/// sorting the sequence `[samwise, sam]` yields the sequence `[sam,
/// samwise]`. Under preference order semantics, the latter sequence will
/// never match `samwise` where as the first sequence can.
///
/// # Example
///
/// This example shows basic usage.
///
/// ```
/// use regex_syntax::hir::literal::Seq;
///
/// let mut seq = Seq::new(&["foo", "quux", "bar"]);
/// seq.sort();
///
/// assert_eq!(Seq::new(&["bar", "foo", "quux"]), seq);
/// ```
#[inline]
pub fn sort(&mut self) {
if let Some(ref mut lits) = self.literals {
lits.sort();
}
}
/// Reverses all of the literals in this sequence.
///
/// The order of the sequence itself is preserved.
///
/// # Example
///
/// This example shows basic usage.
///
/// ```
/// use regex_syntax::hir::literal::Seq;
///
/// let mut seq = Seq::new(&["oof", "rab"]);
/// seq.reverse_literals();
/// assert_eq!(Seq::new(&["foo", "bar"]), seq);
/// ```
#[inline]
pub fn reverse_literals(&mut self) {
if let Some(ref mut lits) = self.literals {
for lit in lits.iter_mut() {
lit.reverse();
}
}
}
/// Shrinks this seq to its minimal size while respecting the preference
/// order of its literals.
///
/// While this routine will remove duplicate literals from this seq, it
/// will also remove literals that can never match in a leftmost-first or
/// "preference order" search. Similar to [`Seq::dedup`], if a literal is
/// deduped, then the one that remains is made inexact.
///
/// This is a no-op on seqs that are empty or not finite.
///
/// # Example
///
/// This example shows the difference between `{sam, samwise}` and
/// `{samwise, sam}`.
///
/// ```
/// use regex_syntax::hir::literal::{Literal, Seq};
///
/// // If 'sam' comes before 'samwise' and a preference order search is
/// // executed, then 'samwise' can never match.
/// let mut seq = Seq::new(&["sam", "samwise"]);
/// seq.minimize_by_preference();
/// assert_eq!(Seq::from_iter([Literal::inexact("sam")]), seq);
///
/// // But if they are reversed, then it's possible for 'samwise' to match
/// // since it is given higher preference.
/// let mut seq = Seq::new(&["samwise", "sam"]);
/// seq.minimize_by_preference();
/// assert_eq!(Seq::new(&["samwise", "sam"]), seq);
/// ```
///
/// This example shows that if an empty string is in this seq, then
/// anything that comes after it can never match.
///
/// ```
/// use regex_syntax::hir::literal::{Literal, Seq};
///
/// // An empty string is a prefix of all strings, so it automatically
/// // inhibits any subsequent strings from matching.
/// let mut seq = Seq::new(&["foo", "bar", "", "quux", "fox"]);
/// seq.minimize_by_preference();
/// let expected = Seq::from_iter([
/// Literal::exact("foo"),
/// Literal::exact("bar"),
/// Literal::inexact(""),
/// ]);
/// assert_eq!(expected, seq);
///
/// // And of course, if it's at the beginning, then it makes it impossible
/// // for anything else to match.
/// let mut seq = Seq::new(&["", "foo", "quux", "fox"]);
/// seq.minimize_by_preference();
/// assert_eq!(Seq::from_iter([Literal::inexact("")]), seq);
/// ```
#[inline]
pub fn minimize_by_preference(&mut self) {
if let Some(ref mut lits) = self.literals {
PreferenceTrie::minimize(lits, false);
}
}
/// Trims all literals in this seq such that only the first `len` bytes
/// remain. If a literal has less than or equal to `len` bytes, then it
/// remains unchanged. Otherwise, it is trimmed and made inexact.
///
/// # Example
///
/// ```
/// use regex_syntax::hir::literal::{Literal, Seq};
///
/// let mut seq = Seq::new(&["a", "foo", "quux"]);
/// seq.keep_first_bytes(2);
///
/// let expected = Seq::from_iter([
/// Literal::exact("a"),
/// Literal::inexact("fo"),
/// Literal::inexact("qu"),
/// ]);
/// assert_eq!(expected, seq);
/// ```
#[inline]
pub fn keep_first_bytes(&mut self, len: usize) {
if let Some(ref mut lits) = self.literals {
for m in lits.iter_mut() {
m.keep_first_bytes(len);
}
}
}
/// Trims all literals in this seq such that only the last `len` bytes
/// remain. If a literal has less than or equal to `len` bytes, then it
/// remains unchanged. Otherwise, it is trimmed and made inexact.
///
/// # Example
///
/// ```
/// use regex_syntax::hir::literal::{Literal, Seq};
///
/// let mut seq = Seq::new(&["a", "foo", "quux"]);
/// seq.keep_last_bytes(2);
///
/// let expected = Seq::from_iter([
/// Literal::exact("a"),
/// Literal::inexact("oo"),
/// Literal::inexact("ux"),
/// ]);
/// assert_eq!(expected, seq);
/// ```
#[inline]
pub fn keep_last_bytes(&mut self, len: usize) {
if let Some(ref mut lits) = self.literals {
for m in lits.iter_mut() {
m.keep_last_bytes(len);
}
}
}
/// Returns true if this sequence is finite.
///
/// When false, this sequence is infinite and must be treated as if it
/// contains every possible literal.
#[inline]
pub fn is_finite(&self) -> bool {
self.literals.is_some()
}
/// Returns true if and only if this sequence is finite and empty.
///
/// An empty sequence never matches anything. It can only be produced by
/// literal extraction when the corresponding regex itself cannot match.
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == Some(0)
}
/// Returns the number of literals in this sequence if the sequence is
/// finite. If the sequence is infinite, then `None` is returned.
#[inline]
pub fn len(&self) -> Option<usize> {
self.literals.as_ref().map(|lits| lits.len())
}
/// Returns true if and only if all literals in this sequence are exact.
///
/// This returns false if the sequence is infinite.
#[inline]
pub fn is_exact(&self) -> bool {
self.literals().map_or(false, |lits| lits.iter().all(|x| x.is_exact()))
}
/// Returns true if and only if all literals in this sequence are inexact.
///
/// This returns true if the sequence is infinite.
#[inline]
pub fn is_inexact(&self) -> bool {
self.literals().map_or(true, |lits| lits.iter().all(|x| !x.is_exact()))
}
/// Return the maximum length of the sequence that would result from
/// unioning `self` with `other`. If either set is infinite, then this
/// returns `None`.
#[inline]
fn max_union_len(&self, other: &Seq) -> Option<usize> {
let len1 = self.len()?;
let len2 = other.len()?;
Some(len1.saturating_add(len2))
}
/// Return the maximum length of the sequence that would result from the
/// cross product of `self` with `other`. If either set is infinite, then
/// this returns `None`.
#[inline]
fn max_cross_len(&self, other: &Seq) -> Option<usize> {
let len1 = self.len()?;
let len2 = other.len()?;
Some(len1.saturating_mul(len2))
}
/// Returns the length of the shortest literal in this sequence.
///
/// If the sequence is infinite or empty, then this returns `None`.
#[inline]
pub fn min_literal_len(&self) -> Option<usize> {
self.literals.as_ref()?.iter().map(|x| x.len()).min()
}
/// Returns the length of the longest literal in this sequence.
///
/// If the sequence is infinite or empty, then this returns `None`.
#[inline]
pub fn max_literal_len(&self) -> Option<usize> {
self.literals.as_ref()?.iter().map(|x| x.len()).max()
}
/// Returns the longest common prefix from this seq.
///
/// If the seq matches any literal or other contains no literals, then
/// there is no meaningful prefix and this returns `None`.
///
/// # Example
///
/// This shows some example seqs and their longest common prefix.
///
/// ```
/// use regex_syntax::hir::literal::Seq;
///
/// let seq = Seq::new(&["foo", "foobar", "fo"]);
/// assert_eq!(Some(&b"fo"[..]), seq.longest_common_prefix());
/// let seq = Seq::new(&["foo", "foo"]);
/// assert_eq!(Some(&b"foo"[..]), seq.longest_common_prefix());
/// let seq = Seq::new(&["foo", "bar"]);
/// assert_eq!(Some(&b""[..]), seq.longest_common_prefix());
/// let seq = Seq::new(&[""]);
/// assert_eq!(Some(&b""[..]), seq.longest_common_prefix());
///
/// let seq = Seq::infinite();
/// assert_eq!(None, seq.longest_common_prefix());
/// let seq = Seq::empty();
/// assert_eq!(None, seq.longest_common_prefix());
/// ```
#[inline]
pub fn longest_common_prefix(&self) -> Option<&[u8]> {
// If we match everything or match nothing, then there's no meaningful
// longest common prefix.
let lits = match self.literals {
None => return None,
Some(ref lits) => lits,
};
if lits.len() == 0 {
return None;
}
let base = lits[0].as_bytes();
let mut len = base.len();
for m in lits.iter().skip(1) {
len = m
.as_bytes()
.iter()
.zip(base[..len].iter())
.take_while(|&(a, b)| a == b)
.count();
if len == 0 {
return Some(&[]);
}
}
Some(&base[..len])
}
/// Returns the longest common suffix from this seq.
///
/// If the seq matches any literal or other contains no literals, then
/// there is no meaningful suffix and this returns `None`.
///
/// # Example
///
/// This shows some example seqs and their longest common suffix.
///
/// ```
/// use regex_syntax::hir::literal::Seq;
///
/// let seq = Seq::new(&["oof", "raboof", "of"]);
/// assert_eq!(Some(&b"of"[..]), seq.longest_common_suffix());
/// let seq = Seq::new(&["foo", "foo"]);
/// assert_eq!(Some(&b"foo"[..]), seq.longest_common_suffix());
/// let seq = Seq::new(&["foo", "bar"]);
/// assert_eq!(Some(&b""[..]), seq.longest_common_suffix());
/// let seq = Seq::new(&[""]);
/// assert_eq!(Some(&b""[..]), seq.longest_common_suffix());
///
/// let seq = Seq::infinite();
/// assert_eq!(None, seq.longest_common_suffix());
/// let seq = Seq::empty();
/// assert_eq!(None, seq.longest_common_suffix());
/// ```
#[inline]
pub fn longest_common_suffix(&self) -> Option<&[u8]> {
// If we match everything or match nothing, then there's no meaningful
// longest common suffix.
let lits = match self.literals {
None => return None,
Some(ref lits) => lits,
};
if lits.len() == 0 {
return None;
}
let base = lits[0].as_bytes();
let mut len = base.len();
for m in lits.iter().skip(1) {
len = m
.as_bytes()
.iter()
.rev()
.zip(base[base.len() - len..].iter().rev())
.take_while(|&(a, b)| a == b)
.count();
if len == 0 {
return Some(&[]);
}
}
Some(&base[base.len() - len..])
}
/// Optimizes this seq while treating its literals as prefixes and
/// respecting the preference order of its literals.
///
/// The specific way "optimization" works is meant to be an implementation
/// detail, as it essentially represents a set of heuristics. The goal
/// that optimization tries to accomplish is to make the literals in this
/// set reflect inputs that will result in a more effective prefilter.
/// Principally by reducing the false positive rate of candidates found by
/// the literals in this sequence. That is, when a match of a literal is
/// found, we would like it to be a strong predictor of the overall match
/// of the regex. If it isn't, then much time will be spent starting and
/// stopping the prefilter search and attempting to confirm the match only
/// to have it fail.
///
/// Some of those heuristics might be:
///
/// * Identifying a common prefix from a larger sequence of literals, and
/// shrinking the sequence down to that single common prefix.
/// * Rejecting the sequence entirely if it is believed to result in very
/// high false positive rate. When this happens, the sequence is made
/// infinite.
/// * Shrinking the sequence to a smaller number of literals representing
/// prefixes, but not shrinking it so much as to make literals too short.
/// (A sequence with very short literals, of 1 or 2 bytes, will typically
/// result in a higher false positive rate.)
///
/// Optimization should only be run once extraction is complete. Namely,
/// optimization may make assumptions that do not compose with other
/// operations in the middle of extraction. For example, optimization will
/// reduce `[E(sam), E(samwise)]` to `[E(sam)]`, but such a transformation
/// is only valid if no other extraction will occur. If other extraction
/// may occur, then the correct transformation would be to `[I(sam)]`.
///
/// The [`Seq::optimize_for_suffix_by_preference`] does the same thing, but
/// for suffixes.
///
/// # Example
///
/// This shows how optimization might transform a sequence. Note that
/// the specific behavior is not a documented guarantee. The heuristics
/// used are an implementation detail and may change over time in semver
/// compatible releases.
///
/// ```
/// use regex_syntax::hir::literal::{Seq, Literal};
///
/// let mut seq = Seq::new(&[
/// "samantha",
/// "sam",
/// "samwise",
/// "frodo",
/// ]);
/// seq.optimize_for_prefix_by_preference();
/// assert_eq!(Seq::from_iter([
/// Literal::exact("samantha"),
/// // Kept exact even though 'samwise' got pruned
/// // because optimization assumes literal extraction
/// // has finished.
/// Literal::exact("sam"),
/// Literal::exact("frodo"),
/// ]), seq);
/// ```
///
/// # Example: optimization may make the sequence infinite
///
/// If the heuristics deem that the sequence could cause a very high false
/// positive rate, then it may make the sequence infinite, effectively
/// disabling its use as a prefilter.
///
/// ```
/// use regex_syntax::hir::literal::{Seq, Literal};
///
/// let mut seq = Seq::new(&[
/// "samantha",
/// // An empty string matches at every position,
/// // thus rendering the prefilter completely
/// // ineffective.
/// "",
/// "sam",
/// "samwise",
/// "frodo",
/// ]);
/// seq.optimize_for_prefix_by_preference();
/// assert!(!seq.is_finite());
/// ```
///
/// Do note that just because there is a `" "` in the sequence, that
/// doesn't mean the sequence will always be made infinite after it is
/// optimized. Namely, if the sequence is considered exact (any match
/// corresponds to an overall match of the original regex), then any match
/// is an overall match, and so the false positive rate is always `0`.
///
/// To demonstrate this, we remove `samwise` from our sequence. This
/// results in no optimization happening and all literals remain exact.
/// Thus the entire sequence is exact, and it is kept as-is, even though
/// one is an ASCII space:
///
/// ```
/// use regex_syntax::hir::literal::{Seq, Literal};
///
/// let mut seq = Seq::new(&[
/// "samantha",
/// " ",
/// "sam",
/// "frodo",
/// ]);
/// seq.optimize_for_prefix_by_preference();
/// assert!(seq.is_finite());
/// ```
#[inline]
pub fn optimize_for_prefix_by_preference(&mut self) {
self.optimize_by_preference(true);
}
/// Optimizes this seq while treating its literals as suffixes and
/// respecting the preference order of its literals.
///
/// Optimization should only be run once extraction is complete.
///
/// The [`Seq::optimize_for_prefix_by_preference`] does the same thing, but
/// for prefixes. See its documentation for more explanation.
#[inline]
pub fn optimize_for_suffix_by_preference(&mut self) {
self.optimize_by_preference(false);
}
fn optimize_by_preference(&mut self, prefix: bool) {
let origlen = match self.len() {
None => return,
Some(len) => len,
};
// Make sure we start with the smallest sequence possible. We use a
// special version of preference minimization that retains exactness.
// This is legal because optimization is only expected to occur once
// extraction is complete.
if prefix {
if let Some(ref mut lits) = self.literals {
PreferenceTrie::minimize(lits, true);
}
}
// Look for a common prefix (or suffix). If we found one of those and
// it's long enough, then it's a good bet that it will be our fastest
// possible prefilter since single-substring search is so fast.
let fix = if prefix {
self.longest_common_prefix()
} else {
self.longest_common_suffix()
};
if let Some(fix) = fix {
// As a special case, if we have a common prefix and the leading
// byte of that prefix is one that we think probably occurs rarely,
// then strip everything down to just that single byte. This should
// promote the use of memchr.
//
// ... we only do this though if our sequence has more than one
// literal. Otherwise, we'd rather just stick with a single literal
// scan. That is, using memchr is probably better than looking
// for 2 or more literals, but probably not as good as a straight
// memmem search.
//
// ... and also only do this when the prefix is short and probably
// not too discriminatory anyway. If it's longer, then it's
// probably quite discriminatory and thus is likely to have a low
// false positive rate.
if prefix
&& origlen > 1
&& fix.len() >= 1
&& fix.len() <= 3
&& rank(fix[0]) < 200
{
self.keep_first_bytes(1);
self.dedup();
return;
}
// We only strip down to the common prefix/suffix if we think
// the existing set of literals isn't great, or if the common
// prefix/suffix is expected to be particularly discriminatory.
let isfast =
self.is_exact() && self.len().map_or(false, |len| len <= 16);
let usefix = fix.len() > 4 || (fix.len() > 1 && !isfast);
if usefix {
// If we keep exactly the number of bytes equal to the length
// of the prefix (or suffix), then by the definition of a
// prefix, every literal in the sequence will be equivalent.
// Thus, 'dedup' will leave us with one literal.
//
// We do it this way to avoid an alloc, but also to make sure
// the exactness of literals is kept (or not).
if prefix {
self.keep_first_bytes(fix.len());
} else {
self.keep_last_bytes(fix.len());
}
self.dedup();
assert_eq!(Some(1), self.len());
// We still fall through here. In particular, we want our
// longest common prefix to be subject to the poison check.
}
}
// Everything below this check is more-or-less about trying to
// heuristically reduce the false positive rate of a prefilter. But
// if our sequence is completely exact, then it's possible the regex
// engine can be skipped entirely. In this case, the false positive
// rate is zero because every literal match corresponds to a regex
// match.
//
// This is OK even if the sequence contains a poison literal. Remember,
// a literal is only poisononous because of what we assume about its
// impact on the false positive rate. However, we do still check for
// an empty string. Empty strings are weird and it's best to let the
// regex engine handle those.
//
// We do currently do this check after the longest common prefix (or
// suffix) check, under the theory that single-substring search is so
// fast that we want that even if we'd end up turning an exact sequence
// into an inexact one. But this might be wrong...
if self.is_exact()
&& self.min_literal_len().map_or(false, |len| len > 0)
{
return;
}
// Now we attempt to shorten the sequence. The idea here is that we
// don't want to look for too many literals, but we want to shorten
// our sequence enough to improve our odds of using better algorithms
// downstream (such as Teddy).
const ATTEMPTS: [(usize, usize); 5] =
[(5, 64), (4, 64), (3, 64), (2, 64), (1, 10)];
for (keep, limit) in ATTEMPTS {
let len = match self.len() {
None => break,
Some(len) => len,
};
if len <= limit {
break;
}
if prefix {
self.keep_first_bytes(keep);
} else {
self.keep_last_bytes(keep);
}
self.minimize_by_preference();
}
// Check for a poison literal. A poison literal is one that is short
// and is believed to have a very high match count. These poisons
// generally lead to a prefilter with a very high false positive rate,
// and thus overall worse performance.
//
// We do this last because we could have gone from a non-poisonous
// sequence to a poisonous one. Perhaps we should add some code to
// prevent such transitions in the first place, but then again, we
// likely only made the transition in the first place if the sequence
// was itself huge. And huge sequences are themselves poisonous. So...
if let Some(lits) = self.literals() {
if lits.iter().any(|lit| lit.is_poisonous()) {
self.make_infinite();
}
}
}
}
impl core::fmt::Debug for Seq {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "Seq")?;
if let Some(lits) = self.literals() {
f.debug_list().entries(lits.iter()).finish()
} else {
write!(f, "[∅]")
}
}
}
impl FromIterator<Literal> for Seq {
fn from_iter<T: IntoIterator<Item = Literal>>(it: T) -> Seq {
let mut seq = Seq::empty();
for literal in it {
seq.push(literal);
}
seq
}
}
/// A single literal extracted from an [`Hir`] expression.
///
/// A literal is composed of two things:
///
/// * A sequence of bytes. No guarantees with respect to UTF-8 are provided.
/// In particular, even if the regex a literal is extracted from is UTF-8, the
/// literal extracted may not be valid UTF-8. (For example, if an [`Extractor`]
/// limit resulted in trimming a literal in a way that splits a codepoint.)
/// * Whether the literal is "exact" or not. An "exact" literal means that it
/// has not been trimmed, and may continue to be extended. If a literal is
/// "exact" after visiting the entire `Hir` expression, then this implies that
/// the literal leads to a match state. (Although it doesn't necessarily imply
/// all occurrences of the literal correspond to a match of the regex, since
/// literal extraction ignores look-around assertions.)
#[derive(Clone, Eq, PartialEq, PartialOrd, Ord)]
pub struct Literal {
bytes: Vec<u8>,
exact: bool,
}
impl Literal {
/// Returns a new exact literal containing the bytes given.
#[inline]
pub fn exact<B: Into<Vec<u8>>>(bytes: B) -> Literal {
Literal { bytes: bytes.into(), exact: true }
}
/// Returns a new inexact literal containing the bytes given.
#[inline]
pub fn inexact<B: Into<Vec<u8>>>(bytes: B) -> Literal {
Literal { bytes: bytes.into(), exact: false }
}
/// Returns the bytes in this literal.
#[inline]
pub fn as_bytes(&self) -> &[u8] {
&self.bytes
}
/// Yields ownership of the bytes inside this literal.
///
/// Note that this throws away whether the literal is "exact" or not.
#[inline]
pub fn into_bytes(self) -> Vec<u8> {
self.bytes
}
/// Returns the length of this literal in bytes.
#[inline]
pub fn len(&self) -> usize {
self.as_bytes().len()
}
/// Returns true if and only if this literal has zero bytes.
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns true if and only if this literal is exact.
#[inline]
pub fn is_exact(&self) -> bool {
self.exact
}
/// Marks this literal as inexact.
///
/// Inexact literals can never be extended. For example,
/// [`Seq::cross_forward`] will not extend inexact literals.
#[inline]
pub fn make_inexact(&mut self) {
self.exact = false;
}
/// Reverse the bytes in this literal.
#[inline]
pub fn reverse(&mut self) {
self.bytes.reverse();
}
/// Extend this literal with the literal given.
///
/// If this literal is inexact, then this is a no-op.
#[inline]
pub fn extend(&mut self, lit: &Literal) {
if !self.is_exact() {
return;
}
self.bytes.extend_from_slice(&lit.bytes);
}
/// Trims this literal such that only the first `len` bytes remain. If
/// this literal has fewer than `len` bytes, then it remains unchanged.
/// Otherwise, the literal is marked as inexact.
#[inline]
pub fn keep_first_bytes(&mut self, len: usize) {
if len >= self.len() {
return;
}
self.make_inexact();
self.bytes.truncate(len);
}
/// Trims this literal such that only the last `len` bytes remain. If this
/// literal has fewer than `len` bytes, then it remains unchanged.
/// Otherwise, the literal is marked as inexact.
#[inline]
pub fn keep_last_bytes(&mut self, len: usize) {
if len >= self.len() {
return;
}
self.make_inexact();
self.bytes.drain(..self.len() - len);
}
/// Returns true if it is believe that this literal is likely to match very
/// frequently, and is thus not a good candidate for a prefilter.
fn is_poisonous(&self) -> bool {
self.is_empty() || (self.len() == 1 && rank(self.as_bytes()[0]) >= 250)
}
}
impl From<u8> for Literal {
fn from(byte: u8) -> Literal {
Literal::exact(vec![byte])
}
}
impl From<char> for Literal {
fn from(ch: char) -> Literal {
use alloc::string::ToString;
Literal::exact(ch.encode_utf8(&mut [0; 4]).to_string())
}
}
impl AsRef<[u8]> for Literal {
fn as_ref(&self) -> &[u8] {
self.as_bytes()
}
}
impl core::fmt::Debug for Literal {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let tag = if self.exact { "E" } else { "I" };
f.debug_tuple(tag)
.field(&crate::debug::Bytes(self.as_bytes()))
.finish()
}
}
/// A "preference" trie that rejects literals that will never match when
/// executing a leftmost first or "preference" search.
///
/// For example, if 'sam' is inserted, then trying to insert 'samwise' will be
/// rejected because 'samwise' can never match since 'sam' will always take
/// priority. However, if 'samwise' is inserted first, then inserting 'sam'
/// after it is accepted. In this case, either 'samwise' or 'sam' can match in
/// a "preference" search.
///
/// Note that we only use this trie as a "set." That is, given a sequence of
/// literals, we insert each one in order. An `insert` will reject a literal
/// if a prefix of that literal already exists in the trie. Thus, to rebuild
/// the "minimal" sequence, we simply only keep literals that were successfully
/// inserted. (Since we don't need traversal, one wonders whether we can make
/// some simplifications here, but I haven't given it a ton of thought and I've
/// never seen this show up on a profile. Because of the heuristic limits
/// imposed on literal extractions, the size of the inputs here is usually
/// very small.)
#[derive(Debug, Default)]
struct PreferenceTrie {
/// The states in this trie. The index of a state in this vector is its ID.
states: Vec<State>,
/// The index to allocate to the next literal added to this trie. Starts at
/// 0 and increments by 1 for every literal successfully added to the trie.
next_literal_index: usize,
}
/// A single state in a trie. Uses a sparse representation for its transitions.
#[derive(Debug, Default)]
struct State {
/// Sparse representation of the transitions out of this state. Transitions
/// are sorted by byte. There is at most one such transition for any
/// particular byte.
trans: Vec<(u8, usize)>,
/// Whether this is a matching state or not. If it is, then it contains the
/// index to the matching literal.
literal_index: Option<usize>,
}
impl PreferenceTrie {
/// Minimizes the given sequence of literals while preserving preference
/// order semantics.
///
/// When `keep_exact` is true, the exactness of every literal retained is
/// kept. This is useful when dealing with a fully extracted `Seq` that
/// only contains exact literals. In that case, we can keep all retained
/// literals as exact because we know we'll never need to match anything
/// after them and because any removed literals are guaranteed to never
/// match.
fn minimize(literals: &mut Vec<Literal>, keep_exact: bool) {
use core::cell::RefCell;
// MSRV(1.61): Use retain_mut here to avoid interior mutability.
let trie = RefCell::new(PreferenceTrie::default());
let mut make_inexact = vec![];
literals.retain(|lit| {
match trie.borrow_mut().insert(lit.as_bytes()) {
Ok(_) => true,
Err(i) => {
if !keep_exact {
make_inexact.push(i);
}
false
}
}
});
for i in make_inexact {
literals[i].make_inexact();
}
}
/// Returns `Ok` if the given byte string is accepted into this trie and
/// `Err` otherwise. The index for the success case corresponds to the
/// index of the literal added. The index for the error case corresponds to
/// the index of the literal already in the trie that prevented the given
/// byte string from being added. (Which implies it is a prefix of the one
/// given.)
///
/// In short, the byte string given is accepted into the trie if and only
/// if it is possible for it to match when executing a preference order
/// search.
fn insert(&mut self, bytes: &[u8]) -> Result<usize, usize> {
let mut prev = self.root();
if let Some(idx) = self.states[prev].literal_index {
return Err(idx);
}
for &b in bytes.iter() {
match self.states[prev].trans.binary_search_by_key(&b, |t| t.0) {
Ok(i) => {
prev = self.states[prev].trans[i].1;
if let Some(idx) = self.states[prev].literal_index {
return Err(idx);
}
}
Err(i) => {
let next = self.create_state();
self.states[prev].trans.insert(i, (b, next));
prev = next;
}
}
}
let idx = self.next_literal_index;
self.next_literal_index += 1;
self.states[prev].literal_index = Some(idx);
Ok(idx)
}
/// Returns the root state ID, and if it doesn't exist, creates it.
fn root(&mut self) -> usize {
if !self.states.is_empty() {
0
} else {
self.create_state()
}
}
/// Creates a new empty state and returns its ID.
fn create_state(&mut self) -> usize {
let id = self.states.len();
self.states.push(State::default());
id
}
}
/// Returns the "rank" of the given byte.
///
/// The minimum rank value is `0` and the maximum rank value is `255`.
///
/// The rank of a byte is derived from a heuristic background distribution of
/// relative frequencies of bytes. The heuristic says that lower the rank of a
/// byte, the less likely that byte is to appear in any arbitrary haystack.
pub fn rank(byte: u8) -> u8 {
crate::rank::BYTE_FREQUENCIES[usize::from(byte)]
}
#[cfg(test)]
mod tests {
use super::*;
fn parse(pattern: &str) -> Hir {
crate::ParserBuilder::new().utf8(false).build().parse(pattern).unwrap()
}
fn prefixes(pattern: &str) -> Seq {
Extractor::new().kind(ExtractKind::Prefix).extract(&parse(pattern))
}
fn suffixes(pattern: &str) -> Seq {
Extractor::new().kind(ExtractKind::Suffix).extract(&parse(pattern))
}
fn e(pattern: &str) -> (Seq, Seq) {
(prefixes(pattern), suffixes(pattern))
}
#[allow(non_snake_case)]
fn E(x: &str) -> Literal {
Literal::exact(x.as_bytes())
}
#[allow(non_snake_case)]
fn I(x: &str) -> Literal {
Literal::inexact(x.as_bytes())
}
fn seq<I: IntoIterator<Item = Literal>>(it: I) -> Seq {
Seq::from_iter(it)
}
fn infinite() -> (Seq, Seq) {
(Seq::infinite(), Seq::infinite())
}
fn inexact<I1, I2>(it1: I1, it2: I2) -> (Seq, Seq)
where
I1: IntoIterator<Item = Literal>,
I2: IntoIterator<Item = Literal>,
{
(Seq::from_iter(it1), Seq::from_iter(it2))
}
fn exact<B: AsRef<[u8]>, I: IntoIterator<Item = B>>(it: I) -> (Seq, Seq) {
let s1 = Seq::new(it);
let s2 = s1.clone();
(s1, s2)
}
fn opt<B: AsRef<[u8]>, I: IntoIterator<Item = B>>(it: I) -> (Seq, Seq) {
let (mut p, mut s) = exact(it);
p.optimize_for_prefix_by_preference();
s.optimize_for_suffix_by_preference();
(p, s)
}
#[test]
fn literal() {
assert_eq!(exact(["a"]), e("a"));
assert_eq!(exact(["aaaaa"]), e("aaaaa"));
assert_eq!(exact(["A", "a"]), e("(?i-u)a"));
assert_eq!(exact(["AB", "Ab", "aB", "ab"]), e("(?i-u)ab"));
assert_eq!(exact(["abC", "abc"]), e("ab(?i-u)c"));
assert_eq!(exact([b"\xFF"]), e(r"(?-u:\xFF)"));
#[cfg(feature = "unicode-case")]
{
assert_eq!(exact(["☃"]), e("☃"));
assert_eq!(exact(["☃"]), e("(?i)☃"));
assert_eq!(exact(["☃☃☃☃☃"]), e("☃☃☃☃☃"));
assert_eq!(exact(["Δ"]), e("Δ"));
assert_eq!(exact(["δ"]), e("δ"));
assert_eq!(exact(["Δ", "δ"]), e("(?i)Δ"));
assert_eq!(exact(["Δ", "δ"]), e("(?i)δ"));
assert_eq!(exact(["S", "s", "ſ"]), e("(?i)S"));
assert_eq!(exact(["S", "s", "ſ"]), e("(?i)s"));
assert_eq!(exact(["S", "s", "ſ"]), e("(?i)ſ"));
}
let letters = "ͱͳͷΐάέήίΰαβγδεζηθικλμνξοπρςστυφχψωϊϋ";
assert_eq!(exact([letters]), e(letters));
}
#[test]
fn class() {
assert_eq!(exact(["a", "b", "c"]), e("[abc]"));
assert_eq!(exact(["a1b", "a2b", "a3b"]), e("a[123]b"));
assert_eq!(exact(["δ", "ε"]), e("[εδ]"));
#[cfg(feature = "unicode-case")]
{
assert_eq!(exact(["Δ", "Ε", "δ", "ε", "ϵ"]), e(r"(?i)[εδ]"));
}
}
#[test]
fn look() {
assert_eq!(exact(["ab"]), e(r"a\Ab"));
assert_eq!(exact(["ab"]), e(r"a\zb"));
assert_eq!(exact(["ab"]), e(r"a(?m:^)b"));
assert_eq!(exact(["ab"]), e(r"a(?m:$)b"));
assert_eq!(exact(["ab"]), e(r"a\bb"));
assert_eq!(exact(["ab"]), e(r"a\Bb"));
assert_eq!(exact(["ab"]), e(r"a(?-u:\b)b"));
assert_eq!(exact(["ab"]), e(r"a(?-u:\B)b"));
assert_eq!(exact(["ab"]), e(r"^ab"));
assert_eq!(exact(["ab"]), e(r"$ab"));
assert_eq!(exact(["ab"]), e(r"(?m:^)ab"));
assert_eq!(exact(["ab"]), e(r"(?m:$)ab"));
assert_eq!(exact(["ab"]), e(r"\bab"));
assert_eq!(exact(["ab"]), e(r"\Bab"));
assert_eq!(exact(["ab"]), e(r"(?-u:\b)ab"));
assert_eq!(exact(["ab"]), e(r"(?-u:\B)ab"));
assert_eq!(exact(["ab"]), e(r"ab^"));
assert_eq!(exact(["ab"]), e(r"ab$"));
assert_eq!(exact(["ab"]), e(r"ab(?m:^)"));
assert_eq!(exact(["ab"]), e(r"ab(?m:$)"));
assert_eq!(exact(["ab"]), e(r"ab\b"));
assert_eq!(exact(["ab"]), e(r"ab\B"));
assert_eq!(exact(["ab"]), e(r"ab(?-u:\b)"));
assert_eq!(exact(["ab"]), e(r"ab(?-u:\B)"));
let expected = (seq([I("aZ"), E("ab")]), seq([I("Zb"), E("ab")]));
assert_eq!(expected, e(r"^aZ*b"));
}
#[test]
fn repetition() {
assert_eq!(exact(["a", ""]), e(r"a?"));
assert_eq!(exact(["", "a"]), e(r"a??"));
assert_eq!(inexact([I("a"), E("")], [I("a"), E("")]), e(r"a*"));
assert_eq!(inexact([E(""), I("a")], [E(""), I("a")]), e(r"a*?"));
assert_eq!(inexact([I("a")], [I("a")]), e(r"a+"));
assert_eq!(inexact([I("a")], [I("a")]), e(r"(a+)+"));
assert_eq!(exact(["ab"]), e(r"aZ{0}b"));
assert_eq!(exact(["aZb", "ab"]), e(r"aZ?b"));
assert_eq!(exact(["ab", "aZb"]), e(r"aZ??b"));
assert_eq!(
inexact([I("aZ"), E("ab")], [I("Zb"), E("ab")]),
e(r"aZ*b")
);
assert_eq!(
inexact([E("ab"), I("aZ")], [E("ab"), I("Zb")]),
e(r"aZ*?b")
);
assert_eq!(inexact([I("aZ")], [I("Zb")]), e(r"aZ+b"));
assert_eq!(inexact([I("aZ")], [I("Zb")]), e(r"aZ+?b"));
assert_eq!(exact(["aZZb"]), e(r"aZ{2}b"));
assert_eq!(inexact([I("aZZ")], [I("ZZb")]), e(r"aZ{2,3}b"));
assert_eq!(exact(["abc", ""]), e(r"(abc)?"));
assert_eq!(exact(["", "abc"]), e(r"(abc)??"));
assert_eq!(inexact([I("a"), E("b")], [I("ab"), E("b")]), e(r"a*b"));
assert_eq!(inexact([E("b"), I("a")], [E("b"), I("ab")]), e(r"a*?b"));
assert_eq!(inexact([I("ab")], [I("b")]), e(r"ab+"));
assert_eq!(inexact([I("a"), I("b")], [I("b")]), e(r"a*b+"));
// FIXME: The suffixes for this don't look quite right to me. I think
// the right suffixes would be: [I(ac), I(bc), E(c)]. The main issue I
// think is that suffixes are computed by iterating over concatenations
// in reverse, and then [bc, ac, c] ordering is indeed correct from
// that perspective. We also test a few more equivalent regexes, and
// we get the same result, so it is consistent at least I suppose.
//
// The reason why this isn't an issue is that it only messes up
// preference order, and currently, suffixes are never used in a
// context where preference order matters. For prefixes it matters
// because we sometimes want to use prefilters without confirmation
// when all of the literals are exact (and there's no look-around). But
// we never do that for suffixes. Any time we use suffixes, we always
// include a confirmation step. If that ever changes, then it's likely
// this bug will need to be fixed, but last time I looked, it appears
// hard to do so.
assert_eq!(
inexact([I("a"), I("b"), E("c")], [I("bc"), I("ac"), E("c")]),
e(r"a*b*c")
);
assert_eq!(
inexact([I("a"), I("b"), E("c")], [I("bc"), I("ac"), E("c")]),
e(r"(a+)?(b+)?c")
);
assert_eq!(
inexact([I("a"), I("b"), E("c")], [I("bc"), I("ac"), E("c")]),
e(r"(a+|)(b+|)c")
);
// A few more similarish but not identical regexes. These may have a
// similar problem as above.
assert_eq!(
inexact(
[I("a"), I("b"), I("c"), E("")],
[I("c"), I("b"), I("a"), E("")]
),
e(r"a*b*c*")
);
assert_eq!(inexact([I("a"), I("b"), I("c")], [I("c")]), e(r"a*b*c+"));
assert_eq!(inexact([I("a"), I("b")], [I("bc")]), e(r"a*b+c"));
assert_eq!(inexact([I("a"), I("b")], [I("c"), I("b")]), e(r"a*b+c*"));
assert_eq!(inexact([I("ab"), E("a")], [I("b"), E("a")]), e(r"ab*"));
assert_eq!(
inexact([I("ab"), E("ac")], [I("bc"), E("ac")]),
e(r"ab*c")
);
assert_eq!(inexact([I("ab")], [I("b")]), e(r"ab+"));
assert_eq!(inexact([I("ab")], [I("bc")]), e(r"ab+c"));
assert_eq!(
inexact([I("z"), E("azb")], [I("zazb"), E("azb")]),
e(r"z*azb")
);
let expected =
exact(["aaa", "aab", "aba", "abb", "baa", "bab", "bba", "bbb"]);
assert_eq!(expected, e(r"[ab]{3}"));
let expected = inexact(
[
I("aaa"),
I("aab"),
I("aba"),
I("abb"),
I("baa"),
I("bab"),
I("bba"),
I("bbb"),
],
[
I("aaa"),
I("aab"),
I("aba"),
I("abb"),
I("baa"),
I("bab"),
I("bba"),
I("bbb"),
],
);
assert_eq!(expected, e(r"[ab]{3,4}"));
}
#[test]
fn concat() {
let empty: [&str; 0] = [];
assert_eq!(exact(["abcxyz"]), e(r"abc()xyz"));
assert_eq!(exact(["abcxyz"]), e(r"(abc)(xyz)"));
assert_eq!(exact(["abcmnoxyz"]), e(r"abc()mno()xyz"));
assert_eq!(exact(empty), e(r"abc[a&&b]xyz"));
assert_eq!(exact(["abcxyz"]), e(r"abc[a&&b]*xyz"));
}
#[test]
fn alternation() {
assert_eq!(exact(["abc", "mno", "xyz"]), e(r"abc|mno|xyz"));
assert_eq!(
inexact(
[E("abc"), I("mZ"), E("mo"), E("xyz")],
[E("abc"), I("Zo"), E("mo"), E("xyz")]
),
e(r"abc|mZ*o|xyz")
);
assert_eq!(exact(["abc", "xyz"]), e(r"abc|M[a&&b]N|xyz"));
assert_eq!(exact(["abc", "MN", "xyz"]), e(r"abc|M[a&&b]*N|xyz"));
assert_eq!(exact(["aaa", "aaaaa"]), e(r"(?:|aa)aaa"));
assert_eq!(
inexact(
[I("aaa"), E(""), I("aaaaa"), E("aa")],
[I("aaa"), E(""), E("aa")]
),
e(r"(?:|aa)(?:aaa)*")
);
assert_eq!(
inexact(
[E(""), I("aaa"), E("aa"), I("aaaaa")],
[E(""), I("aaa"), E("aa")]
),
e(r"(?:|aa)(?:aaa)*?")
);
assert_eq!(
inexact([E("a"), I("b"), E("")], [E("a"), I("b"), E("")]),
e(r"a|b*")
);
assert_eq!(inexact([E("a"), I("b")], [E("a"), I("b")]), e(r"a|b+"));
assert_eq!(
inexact([I("a"), E("b"), E("c")], [I("ab"), E("b"), E("c")]),
e(r"a*b|c")
);
assert_eq!(
inexact(
[E("a"), E("b"), I("c"), E("")],
[E("a"), E("b"), I("c"), E("")]
),
e(r"a|(?:b|c*)")
);
assert_eq!(
inexact(
[I("a"), I("b"), E("c"), I("a"), I("ab"), E("c")],
[I("ac"), I("bc"), E("c"), I("ac"), I("abc"), E("c")],
),
e(r"(a|b)*c|(a|ab)*c")
);
assert_eq!(
exact(["abef", "abgh", "cdef", "cdgh"]),
e(r"(ab|cd)(ef|gh)")
);
assert_eq!(
exact([
"abefij", "abefkl", "abghij", "abghkl", "cdefij", "cdefkl",
"cdghij", "cdghkl",
]),
e(r"(ab|cd)(ef|gh)(ij|kl)")
);
}
#[test]
fn impossible() {
let empty: [&str; 0] = [];
assert_eq!(exact(empty), e(r"[a&&b]"));
assert_eq!(exact(empty), e(r"a[a&&b]"));
assert_eq!(exact(empty), e(r"[a&&b]b"));
assert_eq!(exact(empty), e(r"a[a&&b]b"));
assert_eq!(exact(["a", "b"]), e(r"a|[a&&b]|b"));
assert_eq!(exact(["a", "b"]), e(r"a|c[a&&b]|b"));
assert_eq!(exact(["a", "b"]), e(r"a|[a&&b]d|b"));
assert_eq!(exact(["a", "b"]), e(r"a|c[a&&b]d|b"));
assert_eq!(exact([""]), e(r"[a&&b]*"));
assert_eq!(exact(["MN"]), e(r"M[a&&b]*N"));
}
// This tests patterns that contain something that defeats literal
// detection, usually because it would blow some limit on the total number
// of literals that can be returned.
//
// The main idea is that when literal extraction sees something that
// it knows will blow a limit, it replaces it with a marker that says
// "any literal will match here." While not necessarily true, the
// over-estimation is just fine for the purposes of literal extraction,
// because the imprecision doesn't matter: too big is too big.
//
// This is one of the trickier parts of literal extraction, since we need
// to make sure all of our literal extraction operations correctly compose
// with the markers.
#[test]
fn anything() {
assert_eq!(infinite(), e(r"."));
assert_eq!(infinite(), e(r"(?s)."));
assert_eq!(infinite(), e(r"[A-Za-z]"));
assert_eq!(infinite(), e(r"[A-Z]"));
assert_eq!(exact([""]), e(r"[A-Z]{0}"));
assert_eq!(infinite(), e(r"[A-Z]?"));
assert_eq!(infinite(), e(r"[A-Z]*"));
assert_eq!(infinite(), e(r"[A-Z]+"));
assert_eq!((seq([I("1")]), Seq::infinite()), e(r"1[A-Z]"));
assert_eq!((seq([I("1")]), seq([I("2")])), e(r"1[A-Z]2"));
assert_eq!((Seq::infinite(), seq([I("123")])), e(r"[A-Z]+123"));
assert_eq!(infinite(), e(r"[A-Z]+123[A-Z]+"));
assert_eq!(infinite(), e(r"1|[A-Z]|3"));
assert_eq!(
(seq([E("1"), I("2"), E("3")]), Seq::infinite()),
e(r"1|2[A-Z]|3"),
);
assert_eq!(
(Seq::infinite(), seq([E("1"), I("2"), E("3")])),
e(r"1|[A-Z]2|3"),
);
assert_eq!(
(seq([E("1"), I("2"), E("4")]), seq([E("1"), I("3"), E("4")])),
e(r"1|2[A-Z]3|4"),
);
assert_eq!((Seq::infinite(), seq([I("2")])), e(r"(?:|1)[A-Z]2"));
assert_eq!(inexact([I("a")], [I("z")]), e(r"a.z"));
}
// Like the 'anything' test, but it uses smaller limits in order to test
// the logic for effectively aborting literal extraction when the seqs get
// too big.
#[test]
fn anything_small_limits() {
fn prefixes(pattern: &str) -> Seq {
Extractor::new()
.kind(ExtractKind::Prefix)
.limit_total(10)
.extract(&parse(pattern))
}
fn suffixes(pattern: &str) -> Seq {
Extractor::new()
.kind(ExtractKind::Suffix)
.limit_total(10)
.extract(&parse(pattern))
}
fn e(pattern: &str) -> (Seq, Seq) {
(prefixes(pattern), suffixes(pattern))
}
assert_eq!(
(
seq([
I("aaa"),
I("aab"),
I("aba"),
I("abb"),
I("baa"),
I("bab"),
I("bba"),
I("bbb")
]),
seq([
I("aaa"),
I("aab"),
I("aba"),
I("abb"),
I("baa"),
I("bab"),
I("bba"),
I("bbb")
])
),
e(r"[ab]{3}{3}")
);
assert_eq!(infinite(), e(r"ab|cd|ef|gh|ij|kl|mn|op|qr|st|uv|wx|yz"));
}
#[test]
fn empty() {
assert_eq!(exact([""]), e(r""));
assert_eq!(exact([""]), e(r"^"));
assert_eq!(exact([""]), e(r"$"));
assert_eq!(exact([""]), e(r"(?m:^)"));
assert_eq!(exact([""]), e(r"(?m:$)"));
assert_eq!(exact([""]), e(r"\b"));
assert_eq!(exact([""]), e(r"\B"));
assert_eq!(exact([""]), e(r"(?-u:\b)"));
assert_eq!(exact([""]), e(r"(?-u:\B)"));
}
#[test]
fn odds_and_ends() {
assert_eq!((Seq::infinite(), seq([I("a")])), e(r".a"));
assert_eq!((seq([I("a")]), Seq::infinite()), e(r"a."));
assert_eq!(infinite(), e(r"a|."));
assert_eq!(infinite(), e(r".|a"));
let pat = r"M[ou]'?am+[ae]r .*([AEae]l[- ])?[GKQ]h?[aeu]+([dtz][dhz]?)+af[iy]";
let expected = inexact(
["Mo'am", "Moam", "Mu'am", "Muam"].map(I),
[
"ddafi", "ddafy", "dhafi", "dhafy", "dzafi", "dzafy", "dafi",
"dafy", "tdafi", "tdafy", "thafi", "thafy", "tzafi", "tzafy",
"tafi", "tafy", "zdafi", "zdafy", "zhafi", "zhafy", "zzafi",
"zzafy", "zafi", "zafy",
]
.map(I),
);
assert_eq!(expected, e(pat));
assert_eq!(
(seq(["fn is_", "fn as_"].map(I)), Seq::infinite()),
e(r"fn is_([A-Z]+)|fn as_([A-Z]+)"),
);
assert_eq!(
inexact([I("foo")], [I("quux")]),
e(r"foo[A-Z]+bar[A-Z]+quux")
);
assert_eq!(infinite(), e(r"[A-Z]+bar[A-Z]+"));
assert_eq!(
exact(["Sherlock Holmes"]),
e(r"(?m)^Sherlock Holmes|Sherlock Holmes$")
);
assert_eq!(exact(["sa", "sb"]), e(r"\bs(?:[ab])"));
}
// This tests a specific regex along with some heuristic steps to reduce
// the sequences extracted. This is meant to roughly correspond to the
// types of heuristics used to shrink literal sets in practice. (Shrinking
// is done because you want to balance "spend too much work looking for
// too many literals" and "spend too much work processing false positive
// matches from short literals.")
#[test]
#[cfg(feature = "unicode-case")]
fn holmes() {
let expected = inexact(
["HOL", "HOl", "HoL", "Hol", "hOL", "hOl", "hoL", "hol"].map(I),
[
"MES", "MEs", "Eſ", "MeS", "Mes", "eſ", "mES", "mEs", "meS",
"mes",
]
.map(I),
);
let (mut prefixes, mut suffixes) = e(r"(?i)Holmes");
prefixes.keep_first_bytes(3);
suffixes.keep_last_bytes(3);
prefixes.minimize_by_preference();
suffixes.minimize_by_preference();
assert_eq!(expected, (prefixes, suffixes));
}
// This tests that we get some kind of literals extracted for a beefier
// alternation with case insensitive mode enabled. At one point during
// development, this returned nothing, and motivated some special case
// code in Extractor::union to try and trim down the literal sequences
// if the union would blow the limits set.
#[test]
#[cfg(feature = "unicode-case")]
fn holmes_alt() {
let mut pre =
prefixes(r"(?i)Sherlock|Holmes|Watson|Irene|Adler|John|Baker");
assert!(pre.len().unwrap() > 0);
pre.optimize_for_prefix_by_preference();
assert!(pre.len().unwrap() > 0);
}
// See: https://github.com/rust-lang/regex/security/advisories/GHSA-m5pq-gvj9-9vr8
// See: CVE-2022-24713
//
// We test this here to ensure literal extraction completes in reasonable
// time and isn't materially impacted by these sorts of pathological
// repeats.
#[test]
fn crazy_repeats() {
assert_eq!(inexact([I("")], [I("")]), e(r"(?:){4294967295}"));
assert_eq!(
inexact([I("")], [I("")]),
e(r"(?:){64}{64}{64}{64}{64}{64}")
);
assert_eq!(inexact([I("")], [I("")]), e(r"x{0}{4294967295}"));
assert_eq!(inexact([I("")], [I("")]), e(r"(?:|){4294967295}"));
assert_eq!(
inexact([E("")], [E("")]),
e(r"(?:){8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}")
);
let repa = "a".repeat(100);
assert_eq!(
inexact([I(&repa)], [I(&repa)]),
e(r"a{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}")
);
}
#[test]
fn huge() {
let pat = r#"(?-u)
2(?:
[45]\d{3}|
7(?:
1[0-267]|
2[0-289]|
3[0-29]|
4[01]|
5[1-3]|
6[013]|
7[0178]|
91
)|
8(?:
0[125]|
[139][1-6]|
2[0157-9]|
41|
6[1-35]|
7[1-5]|
8[1-8]|
90
)|
9(?:
0[0-2]|
1[0-4]|
2[568]|
3[3-6]|
5[5-7]|
6[0167]|
7[15]|
8[0146-9]
)
)\d{4}|
3(?:
12?[5-7]\d{2}|
0(?:
2(?:
[025-79]\d|
[348]\d{1,2}
)|
3(?:
[2-4]\d|
[56]\d?
)
)|
2(?:
1\d{2}|
2(?:
[12]\d|
[35]\d{1,2}|
4\d?
)
)|
3(?:
1\d{2}|
2(?:
[2356]\d|
4\d{1,2}
)
)|
4(?:
1\d{2}|
2(?:
2\d{1,2}|
[47]|
5\d{2}
)
)|
5(?:
1\d{2}|
29
)|
[67]1\d{2}|
8(?:
1\d{2}|
2(?:
2\d{2}|
3|
4\d
)
)
)\d{3}|
4(?:
0(?:
2(?:
[09]\d|
7
)|
33\d{2}
)|
1\d{3}|
2(?:
1\d{2}|
2(?:
[25]\d?|
[348]\d|
[67]\d{1,2}
)
)|
3(?:
1\d{2}(?:
\d{2}
)?|
2(?:
[045]\d|
[236-9]\d{1,2}
)|
32\d{2}
)|
4(?:
[18]\d{2}|
2(?:
[2-46]\d{2}|
3
)|
5[25]\d{2}
)|
5(?:
1\d{2}|
2(?:
3\d|
5
)
)|
6(?:
[18]\d{2}|
2(?:
3(?:
\d{2}
)?|
[46]\d{1,2}|
5\d{2}|
7\d
)|
5(?:
3\d?|
4\d|
[57]\d{1,2}|
6\d{2}|
8
)
)|
71\d{2}|
8(?:
[18]\d{2}|
23\d{2}|
54\d{2}
)|
9(?:
[18]\d{2}|
2[2-5]\d{2}|
53\d{1,2}
)
)\d{3}|
5(?:
02[03489]\d{2}|
1\d{2}|
2(?:
1\d{2}|
2(?:
2(?:
\d{2}
)?|
[457]\d{2}
)
)|
3(?:
1\d{2}|
2(?:
[37](?:
\d{2}
)?|
[569]\d{2}
)
)|
4(?:
1\d{2}|
2[46]\d{2}
)|
5(?:
1\d{2}|
26\d{1,2}
)|
6(?:
[18]\d{2}|
2|
53\d{2}
)|
7(?:
1|
24
)\d{2}|
8(?:
1|
26
)\d{2}|
91\d{2}
)\d{3}|
6(?:
0(?:
1\d{2}|
2(?:
3\d{2}|
4\d{1,2}
)
)|
2(?:
2[2-5]\d{2}|
5(?:
[3-5]\d{2}|
7
)|
8\d{2}
)|
3(?:
1|
2[3478]
)\d{2}|
4(?:
1|
2[34]
)\d{2}|
5(?:
1|
2[47]
)\d{2}|
6(?:
[18]\d{2}|
6(?:
2(?:
2\d|
[34]\d{2}
)|
5(?:
[24]\d{2}|
3\d|
5\d{1,2}
)
)
)|
72[2-5]\d{2}|
8(?:
1\d{2}|
2[2-5]\d{2}
)|
9(?:
1\d{2}|
2[2-6]\d{2}
)
)\d{3}|
7(?:
(?:
02|
[3-589]1|
6[12]|
72[24]
)\d{2}|
21\d{3}|
32
)\d{3}|
8(?:
(?:
4[12]|
[5-7]2|
1\d?
)|
(?:
0|
3[12]|
[5-7]1|
217
)\d
)\d{4}|
9(?:
[35]1|
(?:
[024]2|
81
)\d|
(?:
1|
[24]1
)\d{2}
)\d{3}
"#;
// TODO: This is a good candidate of a seq of literals that could be
// shrunk quite a bit and still be very productive with respect to
// literal optimizations.
let (prefixes, suffixes) = e(pat);
assert!(!suffixes.is_finite());
assert_eq!(Some(243), prefixes.len());
}
#[test]
fn optimize() {
// This gets a common prefix that isn't too short.
let (p, s) =
opt(["foobarfoobar", "foobar", "foobarzfoobar", "foobarfoobar"]);
assert_eq!(seq([I("foobar")]), p);
assert_eq!(seq([I("foobar")]), s);
// This also finds a common prefix, but since it's only one byte, it
// prefers the multiple literals.
let (p, s) = opt(["abba", "akka", "abccba"]);
assert_eq!(exact(["abba", "akka", "abccba"]), (p, s));
let (p, s) = opt(["sam", "samwise"]);
assert_eq!((seq([E("sam")]), seq([E("sam"), E("samwise")])), (p, s));
// The empty string is poisonous, so our seq becomes infinite, even
// though all literals are exact.
let (p, s) = opt(["foobarfoo", "foo", "", "foozfoo", "foofoo"]);
assert!(!p.is_finite());
assert!(!s.is_finite());
// A space is also poisonous, so our seq becomes infinite. But this
// only gets triggered when we don't have a completely exact sequence.
// When the sequence is exact, spaces are okay, since we presume that
// any prefilter will match a space more quickly than the regex engine.
// (When the sequence is exact, there's a chance of the prefilter being
// used without needing the regex engine at all.)
let mut p = seq([E("foobarfoo"), I("foo"), E(" "), E("foofoo")]);
p.optimize_for_prefix_by_preference();
assert!(!p.is_finite());
}
}