1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
use std::cell::RefCell;
use std::collections::HashMap;
use std::panic::AssertUnwindSafe;
use std::sync::Arc;

#[cfg(feature = "perf-literal")]
use aho_corasick::{AhoCorasick, MatchKind};
use regex_syntax::hir::literal;
use regex_syntax::hir::{Hir, Look};
use regex_syntax::ParserBuilder;

use crate::backtrack;
use crate::compile::Compiler;
#[cfg(feature = "perf-dfa")]
use crate::dfa;
use crate::error::Error;
use crate::input::{ByteInput, CharInput};
use crate::literal::LiteralSearcher;
use crate::pikevm;
use crate::pool::{Pool, PoolGuard};
use crate::prog::Program;
use crate::re_builder::RegexOptions;
use crate::re_bytes;
use crate::re_set;
use crate::re_trait::{Locations, RegularExpression, Slot};
use crate::re_unicode;
use crate::utf8::next_utf8;

/// `Exec` manages the execution of a regular expression.
///
/// In particular, this manages the various compiled forms of a single regular
/// expression and the choice of which matching engine to use to execute a
/// regular expression.
#[derive(Debug)]
pub struct Exec {
    /// All read only state.
    ro: Arc<ExecReadOnly>,
    /// A pool of reusable values for the various matching engines.
    ///
    /// Note that boxing this value is not strictly necessary, but it is an
    /// easy way to ensure that T does not bloat the stack sized used by a pool
    /// in the case where T is big. And this turns out to be the case at the
    /// time of writing for regex's use of this pool. At the time of writing,
    /// the size of a Regex on the stack is 856 bytes. Boxing this value
    /// reduces that size to 16 bytes.
    pool: Box<Pool<ProgramCache>>,
}

/// `ExecNoSync` is like `Exec`, except it embeds a reference to a cache. This
/// means it is no longer Sync, but we can now avoid the overhead of
/// synchronization to fetch the cache.
#[derive(Debug)]
pub struct ExecNoSync<'c> {
    /// All read only state.
    ro: &'c Arc<ExecReadOnly>,
    /// Caches for the various matching engines.
    cache: PoolGuard<'c, ProgramCache>,
}

/// `ExecNoSyncStr` is like `ExecNoSync`, but matches on &str instead of &[u8].
#[derive(Debug)]
pub struct ExecNoSyncStr<'c>(ExecNoSync<'c>);

/// `ExecReadOnly` comprises all read only state for a regex. Namely, all such
/// state is determined at compile time and never changes during search.
#[derive(Debug)]
struct ExecReadOnly {
    /// The original regular expressions given by the caller to compile.
    res: Vec<String>,
    /// A compiled program that is used in the NFA simulation and backtracking.
    /// It can be byte-based or Unicode codepoint based.
    ///
    /// N.B. It is not possibly to make this byte-based from the public API.
    /// It is only used for testing byte based programs in the NFA simulations.
    nfa: Program,
    /// A compiled byte based program for DFA execution. This is only used
    /// if a DFA can be executed. (Currently, only word boundary assertions are
    /// not supported.) Note that this program contains an embedded `.*?`
    /// preceding the first capture group, unless the regex is anchored at the
    /// beginning.
    #[allow(dead_code)]
    dfa: Program,
    /// The same as above, except the program is reversed (and there is no
    /// preceding `.*?`). This is used by the DFA to find the starting location
    /// of matches.
    #[allow(dead_code)]
    dfa_reverse: Program,
    /// A set of suffix literals extracted from the regex.
    ///
    /// Prefix literals are stored on the `Program`, since they are used inside
    /// the matching engines.
    #[allow(dead_code)]
    suffixes: LiteralSearcher,
    /// An Aho-Corasick automaton with leftmost-first match semantics.
    ///
    /// This is only set when the entire regex is a simple unanchored
    /// alternation of literals. We could probably use it more circumstances,
    /// but this is already hacky enough in this architecture.
    ///
    /// N.B. We use u32 as a state ID representation under the assumption that
    /// if we were to exhaust the ID space, we probably would have long
    /// surpassed the compilation size limit.
    #[cfg(feature = "perf-literal")]
    ac: Option<AhoCorasick>,
    /// match_type encodes as much upfront knowledge about how we're going to
    /// execute a search as possible.
    match_type: MatchType,
}

/// Facilitates the construction of an executor by exposing various knobs
/// to control how a regex is executed and what kinds of resources it's
/// permitted to use.
// `ExecBuilder` is only public via the `internal` module, so avoid deriving
// `Debug`.
#[allow(missing_debug_implementations)]
pub struct ExecBuilder {
    options: RegexOptions,
    match_type: Option<MatchType>,
    bytes: bool,
    only_utf8: bool,
}

/// Parsed represents a set of parsed regular expressions and their detected
/// literals.
struct Parsed {
    exprs: Vec<Hir>,
    prefixes: literal::Seq,
    suffixes: literal::Seq,
    bytes: bool,
}

impl ExecBuilder {
    /// Create a regex execution builder.
    ///
    /// This uses default settings for everything except the regex itself,
    /// which must be provided. Further knobs can be set by calling methods,
    /// and then finally, `build` to actually create the executor.
    pub fn new(re: &str) -> Self {
        Self::new_many(&[re])
    }

    /// Like new, but compiles the union of the given regular expressions.
    ///
    /// Note that when compiling 2 or more regular expressions, capture groups
    /// are completely unsupported. (This means both `find` and `captures`
    /// won't work.)
    pub fn new_many<I, S>(res: I) -> Self
    where
        S: AsRef<str>,
        I: IntoIterator<Item = S>,
    {
        let mut opts = RegexOptions::default();
        opts.pats = res.into_iter().map(|s| s.as_ref().to_owned()).collect();
        Self::new_options(opts)
    }

    /// Create a regex execution builder.
    pub fn new_options(opts: RegexOptions) -> Self {
        ExecBuilder {
            options: opts,
            match_type: None,
            bytes: false,
            only_utf8: true,
        }
    }

    /// Set the matching engine to be automatically determined.
    ///
    /// This is the default state and will apply whatever optimizations are
    /// possible, such as running a DFA.
    ///
    /// This overrides whatever was previously set via the `nfa` or
    /// `bounded_backtracking` methods.
    pub fn automatic(mut self) -> Self {
        self.match_type = None;
        self
    }

    /// Sets the matching engine to use the NFA algorithm no matter what
    /// optimizations are possible.
    ///
    /// This overrides whatever was previously set via the `automatic` or
    /// `bounded_backtracking` methods.
    pub fn nfa(mut self) -> Self {
        self.match_type = Some(MatchType::Nfa(MatchNfaType::PikeVM));
        self
    }

    /// Sets the matching engine to use a bounded backtracking engine no
    /// matter what optimizations are possible.
    ///
    /// One must use this with care, since the bounded backtracking engine
    /// uses memory proportion to `len(regex) * len(text)`.
    ///
    /// This overrides whatever was previously set via the `automatic` or
    /// `nfa` methods.
    pub fn bounded_backtracking(mut self) -> Self {
        self.match_type = Some(MatchType::Nfa(MatchNfaType::Backtrack));
        self
    }

    /// Compiles byte based programs for use with the NFA matching engines.
    ///
    /// By default, the NFA engines match on Unicode scalar values. They can
    /// be made to use byte based programs instead. In general, the byte based
    /// programs are slower because of a less efficient encoding of character
    /// classes.
    ///
    /// Note that this does not impact DFA matching engines, which always
    /// execute on bytes.
    pub fn bytes(mut self, yes: bool) -> Self {
        self.bytes = yes;
        self
    }

    /// When disabled, the program compiled may match arbitrary bytes.
    ///
    /// When enabled (the default), all compiled programs exclusively match
    /// valid UTF-8 bytes.
    pub fn only_utf8(mut self, yes: bool) -> Self {
        self.only_utf8 = yes;
        self
    }

    /// Set the Unicode flag.
    pub fn unicode(mut self, yes: bool) -> Self {
        self.options.unicode = yes;
        self
    }

    /// Parse the current set of patterns into their AST and extract literals.
    fn parse(&self) -> Result<Parsed, Error> {
        let mut exprs = Vec::with_capacity(self.options.pats.len());
        let mut prefixes = Some(literal::Seq::empty());
        let mut suffixes = Some(literal::Seq::empty());
        let mut bytes = false;
        let is_set = self.options.pats.len() > 1;
        // If we're compiling a regex set and that set has any anchored
        // expressions, then disable all literal optimizations.
        for pat in &self.options.pats {
            let mut parser = ParserBuilder::new()
                .octal(self.options.octal)
                .case_insensitive(self.options.case_insensitive)
                .multi_line(self.options.multi_line)
                .dot_matches_new_line(self.options.dot_matches_new_line)
                .swap_greed(self.options.swap_greed)
                .ignore_whitespace(self.options.ignore_whitespace)
                .unicode(self.options.unicode)
                .utf8(self.only_utf8)
                .nest_limit(self.options.nest_limit)
                .build();
            let expr =
                parser.parse(pat).map_err(|e| Error::Syntax(e.to_string()))?;
            let props = expr.properties();
            // This used to just check whether the HIR matched valid UTF-8
            // or not, but in regex-syntax 0.7, we changed our definition of
            // "matches valid UTF-8" to exclude zero-width matches. And in
            // particular, previously, we considered WordAsciiNegate (that
            // is '(?-u:\B)') to be capable of matching invalid UTF-8. Our
            // matcher engines were built under this assumption and fixing
            // them is not worth it with the imminent plan to switch over to
            // regex-automata. So for now, we retain the previous behavior by
            // just explicitly treating the presence of a negated ASCII word
            // boundary as forcing use to use a byte oriented automaton.
            bytes = bytes
                || !props.is_utf8()
                || props.look_set().contains(Look::WordAsciiNegate);

            if cfg!(feature = "perf-literal") {
                if !props.look_set_prefix().contains(Look::Start)
                    && props.look_set().contains(Look::Start)
                {
                    // Partial anchors unfortunately make it hard to use
                    // prefixes, so disable them.
                    prefixes = None;
                } else if is_set
                    && props.look_set_prefix_any().contains(Look::Start)
                {
                    // Regex sets with anchors do not go well with literal
                    // optimizations.
                    prefixes = None;
                } else if props.look_set_prefix_any().contains_word() {
                    // The new literal extractor ignores look-around while
                    // the old one refused to extract prefixes from regexes
                    // that began with a \b. These old creaky regex internals
                    // can't deal with it, so we drop it.
                    prefixes = None;
                } else if props.look_set_prefix_any().contains(Look::StartLF) {
                    // Similar to the reasoning for word boundaries, this old
                    // regex engine can't handle literal prefixes with '(?m:^)'
                    // at the beginning of a regex.
                    prefixes = None;
                }

                if !props.look_set_suffix().contains(Look::End)
                    && props.look_set().contains(Look::End)
                {
                    // Partial anchors unfortunately make it hard to use
                    // suffixes, so disable them.
                    suffixes = None;
                } else if is_set
                    && props.look_set_suffix_any().contains(Look::End)
                {
                    // Regex sets with anchors do not go well with literal
                    // optimizations.
                    suffixes = None;
                } else if props.look_set_suffix_any().contains_word() {
                    // See the prefix case for reasoning here.
                    suffixes = None;
                } else if props.look_set_suffix_any().contains(Look::EndLF) {
                    // See the prefix case for reasoning here.
                    suffixes = None;
                }

                let (mut pres, mut suffs) =
                    if prefixes.is_none() && suffixes.is_none() {
                        (literal::Seq::infinite(), literal::Seq::infinite())
                    } else {
                        literal_analysis(&expr)
                    };
                // These old creaky regex internals can't handle cases where
                // the literal sequences are exact but there are look-around
                // assertions. So we make sure the sequences are inexact if
                // there are look-around assertions anywhere. This forces the
                // regex engines to run instead of assuming that a literal
                // match implies an overall match.
                if !props.look_set().is_empty() {
                    pres.make_inexact();
                    suffs.make_inexact();
                }
                prefixes = prefixes.and_then(|mut prefixes| {
                    prefixes.union(&mut pres);
                    Some(prefixes)
                });
                suffixes = suffixes.and_then(|mut suffixes| {
                    suffixes.union(&mut suffs);
                    Some(suffixes)
                });
            }
            exprs.push(expr);
        }
        Ok(Parsed {
            exprs,
            prefixes: prefixes.unwrap_or_else(literal::Seq::empty),
            suffixes: suffixes.unwrap_or_else(literal::Seq::empty),
            bytes,
        })
    }

    /// Build an executor that can run a regular expression.
    pub fn build(self) -> Result<Exec, Error> {
        // Special case when we have no patterns to compile.
        // This can happen when compiling a regex set.
        if self.options.pats.is_empty() {
            let ro = Arc::new(ExecReadOnly {
                res: vec![],
                nfa: Program::new(),
                dfa: Program::new(),
                dfa_reverse: Program::new(),
                suffixes: LiteralSearcher::empty(),
                #[cfg(feature = "perf-literal")]
                ac: None,
                match_type: MatchType::Nothing,
            });
            let pool = ExecReadOnly::new_pool(&ro);
            return Ok(Exec { ro, pool });
        }
        let parsed = self.parse()?;
        let mut nfa = Compiler::new()
            .size_limit(self.options.size_limit)
            .bytes(self.bytes || parsed.bytes)
            .only_utf8(self.only_utf8)
            .compile(&parsed.exprs)?;
        let mut dfa = Compiler::new()
            .size_limit(self.options.size_limit)
            .dfa(true)
            .only_utf8(self.only_utf8)
            .compile(&parsed.exprs)?;
        let mut dfa_reverse = Compiler::new()
            .size_limit(self.options.size_limit)
            .dfa(true)
            .only_utf8(self.only_utf8)
            .reverse(true)
            .compile(&parsed.exprs)?;

        #[cfg(feature = "perf-literal")]
        let ac = self.build_aho_corasick(&parsed);
        nfa.prefixes = LiteralSearcher::prefixes(parsed.prefixes);
        dfa.prefixes = nfa.prefixes.clone();
        dfa.dfa_size_limit = self.options.dfa_size_limit;
        dfa_reverse.dfa_size_limit = self.options.dfa_size_limit;

        let mut ro = ExecReadOnly {
            res: self.options.pats,
            nfa,
            dfa,
            dfa_reverse,
            suffixes: LiteralSearcher::suffixes(parsed.suffixes),
            #[cfg(feature = "perf-literal")]
            ac,
            match_type: MatchType::Nothing,
        };
        ro.match_type = ro.choose_match_type(self.match_type);

        let ro = Arc::new(ro);
        let pool = ExecReadOnly::new_pool(&ro);
        Ok(Exec { ro, pool })
    }

    #[cfg(feature = "perf-literal")]
    fn build_aho_corasick(&self, parsed: &Parsed) -> Option<AhoCorasick> {
        if parsed.exprs.len() != 1 {
            return None;
        }
        let lits = match alternation_literals(&parsed.exprs[0]) {
            None => return None,
            Some(lits) => lits,
        };
        // If we have a small number of literals, then let Teddy handle
        // things (see literal/mod.rs).
        if lits.len() <= 32 {
            return None;
        }
        Some(
            AhoCorasick::builder()
                .match_kind(MatchKind::LeftmostFirst)
                .build(&lits)
                // This should never happen because we'd long exceed the
                // compilation limit for regexes first.
                .expect("AC automaton too big"),
        )
    }
}

impl<'c> RegularExpression for ExecNoSyncStr<'c> {
    type Text = str;

    fn slots_len(&self) -> usize {
        self.0.slots_len()
    }

    fn next_after_empty(&self, text: &str, i: usize) -> usize {
        next_utf8(text.as_bytes(), i)
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn shortest_match_at(&self, text: &str, start: usize) -> Option<usize> {
        self.0.shortest_match_at(text.as_bytes(), start)
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn is_match_at(&self, text: &str, start: usize) -> bool {
        self.0.is_match_at(text.as_bytes(), start)
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn find_at(&self, text: &str, start: usize) -> Option<(usize, usize)> {
        self.0.find_at(text.as_bytes(), start)
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn captures_read_at(
        &self,
        locs: &mut Locations,
        text: &str,
        start: usize,
    ) -> Option<(usize, usize)> {
        self.0.captures_read_at(locs, text.as_bytes(), start)
    }
}

impl<'c> RegularExpression for ExecNoSync<'c> {
    type Text = [u8];

    /// Returns the number of capture slots in the regular expression. (There
    /// are two slots for every capture group, corresponding to possibly empty
    /// start and end locations of the capture.)
    fn slots_len(&self) -> usize {
        self.ro.nfa.captures.len() * 2
    }

    fn next_after_empty(&self, _text: &[u8], i: usize) -> usize {
        i + 1
    }

    /// Returns the end of a match location, possibly occurring before the
    /// end location of the correct leftmost-first match.
    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn shortest_match_at(&self, text: &[u8], start: usize) -> Option<usize> {
        if !self.is_anchor_end_match(text) {
            return None;
        }
        match self.ro.match_type {
            #[cfg(feature = "perf-literal")]
            MatchType::Literal(ty) => {
                self.find_literals(ty, text, start).map(|(_, e)| e)
            }
            #[cfg(feature = "perf-dfa")]
            MatchType::Dfa | MatchType::DfaMany => {
                match self.shortest_dfa(text, start) {
                    dfa::Result::Match(end) => Some(end),
                    dfa::Result::NoMatch(_) => None,
                    dfa::Result::Quit => self.shortest_nfa(text, start),
                }
            }
            #[cfg(feature = "perf-dfa")]
            MatchType::DfaAnchoredReverse => {
                match dfa::Fsm::reverse(
                    &self.ro.dfa_reverse,
                    self.cache.value(),
                    true,
                    &text[start..],
                    text.len() - start,
                ) {
                    dfa::Result::Match(_) => Some(text.len()),
                    dfa::Result::NoMatch(_) => None,
                    dfa::Result::Quit => self.shortest_nfa(text, start),
                }
            }
            #[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
            MatchType::DfaSuffix => {
                match self.shortest_dfa_reverse_suffix(text, start) {
                    dfa::Result::Match(e) => Some(e),
                    dfa::Result::NoMatch(_) => None,
                    dfa::Result::Quit => self.shortest_nfa(text, start),
                }
            }
            MatchType::Nfa(ty) => self.shortest_nfa_type(ty, text, start),
            MatchType::Nothing => None,
        }
    }

    /// Returns true if and only if the regex matches text.
    ///
    /// For single regular expressions, this is equivalent to calling
    /// shortest_match(...).is_some().
    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn is_match_at(&self, text: &[u8], start: usize) -> bool {
        if !self.is_anchor_end_match(text) {
            return false;
        }
        // We need to do this dance because shortest_match relies on the NFA
        // filling in captures[1], but a RegexSet has no captures. In other
        // words, a RegexSet can't (currently) use shortest_match. ---AG
        match self.ro.match_type {
            #[cfg(feature = "perf-literal")]
            MatchType::Literal(ty) => {
                self.find_literals(ty, text, start).is_some()
            }
            #[cfg(feature = "perf-dfa")]
            MatchType::Dfa | MatchType::DfaMany => {
                match self.shortest_dfa(text, start) {
                    dfa::Result::Match(_) => true,
                    dfa::Result::NoMatch(_) => false,
                    dfa::Result::Quit => self.match_nfa(text, start),
                }
            }
            #[cfg(feature = "perf-dfa")]
            MatchType::DfaAnchoredReverse => {
                match dfa::Fsm::reverse(
                    &self.ro.dfa_reverse,
                    self.cache.value(),
                    true,
                    &text[start..],
                    text.len() - start,
                ) {
                    dfa::Result::Match(_) => true,
                    dfa::Result::NoMatch(_) => false,
                    dfa::Result::Quit => self.match_nfa(text, start),
                }
            }
            #[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
            MatchType::DfaSuffix => {
                match self.shortest_dfa_reverse_suffix(text, start) {
                    dfa::Result::Match(_) => true,
                    dfa::Result::NoMatch(_) => false,
                    dfa::Result::Quit => self.match_nfa(text, start),
                }
            }
            MatchType::Nfa(ty) => self.match_nfa_type(ty, text, start),
            MatchType::Nothing => false,
        }
    }

    /// Finds the start and end location of the leftmost-first match, starting
    /// at the given location.
    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn find_at(&self, text: &[u8], start: usize) -> Option<(usize, usize)> {
        if !self.is_anchor_end_match(text) {
            return None;
        }
        match self.ro.match_type {
            #[cfg(feature = "perf-literal")]
            MatchType::Literal(ty) => self.find_literals(ty, text, start),
            #[cfg(feature = "perf-dfa")]
            MatchType::Dfa => match self.find_dfa_forward(text, start) {
                dfa::Result::Match((s, e)) => Some((s, e)),
                dfa::Result::NoMatch(_) => None,
                dfa::Result::Quit => {
                    self.find_nfa(MatchNfaType::Auto, text, start)
                }
            },
            #[cfg(feature = "perf-dfa")]
            MatchType::DfaAnchoredReverse => {
                match self.find_dfa_anchored_reverse(text, start) {
                    dfa::Result::Match((s, e)) => Some((s, e)),
                    dfa::Result::NoMatch(_) => None,
                    dfa::Result::Quit => {
                        self.find_nfa(MatchNfaType::Auto, text, start)
                    }
                }
            }
            #[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
            MatchType::DfaSuffix => {
                match self.find_dfa_reverse_suffix(text, start) {
                    dfa::Result::Match((s, e)) => Some((s, e)),
                    dfa::Result::NoMatch(_) => None,
                    dfa::Result::Quit => {
                        self.find_nfa(MatchNfaType::Auto, text, start)
                    }
                }
            }
            MatchType::Nfa(ty) => self.find_nfa(ty, text, start),
            MatchType::Nothing => None,
            #[cfg(feature = "perf-dfa")]
            MatchType::DfaMany => {
                unreachable!("BUG: RegexSet cannot be used with find")
            }
        }
    }

    /// Finds the start and end location of the leftmost-first match and also
    /// fills in all matching capture groups.
    ///
    /// The number of capture slots given should be equal to the total number
    /// of capture slots in the compiled program.
    ///
    /// Note that the first two slots always correspond to the start and end
    /// locations of the overall match.
    fn captures_read_at(
        &self,
        locs: &mut Locations,
        text: &[u8],
        start: usize,
    ) -> Option<(usize, usize)> {
        let slots = locs.as_slots();
        for slot in slots.iter_mut() {
            *slot = None;
        }
        // If the caller unnecessarily uses this, then we try to save them
        // from themselves.
        match slots.len() {
            0 => return self.find_at(text, start),
            2 => {
                return self.find_at(text, start).map(|(s, e)| {
                    slots[0] = Some(s);
                    slots[1] = Some(e);
                    (s, e)
                });
            }
            _ => {} // fallthrough
        }
        if !self.is_anchor_end_match(text) {
            return None;
        }
        match self.ro.match_type {
            #[cfg(feature = "perf-literal")]
            MatchType::Literal(ty) => {
                self.find_literals(ty, text, start).and_then(|(s, e)| {
                    self.captures_nfa_type(
                        MatchNfaType::Auto,
                        slots,
                        text,
                        s,
                        e,
                    )
                })
            }
            #[cfg(feature = "perf-dfa")]
            MatchType::Dfa => {
                if self.ro.nfa.is_anchored_start {
                    self.captures_nfa(slots, text, start)
                } else {
                    match self.find_dfa_forward(text, start) {
                        dfa::Result::Match((s, e)) => self.captures_nfa_type(
                            MatchNfaType::Auto,
                            slots,
                            text,
                            s,
                            e,
                        ),
                        dfa::Result::NoMatch(_) => None,
                        dfa::Result::Quit => {
                            self.captures_nfa(slots, text, start)
                        }
                    }
                }
            }
            #[cfg(feature = "perf-dfa")]
            MatchType::DfaAnchoredReverse => {
                match self.find_dfa_anchored_reverse(text, start) {
                    dfa::Result::Match((s, e)) => self.captures_nfa_type(
                        MatchNfaType::Auto,
                        slots,
                        text,
                        s,
                        e,
                    ),
                    dfa::Result::NoMatch(_) => None,
                    dfa::Result::Quit => self.captures_nfa(slots, text, start),
                }
            }
            #[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
            MatchType::DfaSuffix => {
                match self.find_dfa_reverse_suffix(text, start) {
                    dfa::Result::Match((s, e)) => self.captures_nfa_type(
                        MatchNfaType::Auto,
                        slots,
                        text,
                        s,
                        e,
                    ),
                    dfa::Result::NoMatch(_) => None,
                    dfa::Result::Quit => self.captures_nfa(slots, text, start),
                }
            }
            MatchType::Nfa(ty) => {
                self.captures_nfa_type(ty, slots, text, start, text.len())
            }
            MatchType::Nothing => None,
            #[cfg(feature = "perf-dfa")]
            MatchType::DfaMany => {
                unreachable!("BUG: RegexSet cannot be used with captures")
            }
        }
    }
}

impl<'c> ExecNoSync<'c> {
    /// Finds the leftmost-first match using only literal search.
    #[cfg(feature = "perf-literal")]
    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn find_literals(
        &self,
        ty: MatchLiteralType,
        text: &[u8],
        start: usize,
    ) -> Option<(usize, usize)> {
        use self::MatchLiteralType::*;
        match ty {
            Unanchored => {
                let lits = &self.ro.nfa.prefixes;
                lits.find(&text[start..]).map(|(s, e)| (start + s, start + e))
            }
            AnchoredStart => {
                let lits = &self.ro.nfa.prefixes;
                if start == 0 || !self.ro.nfa.is_anchored_start {
                    lits.find_start(&text[start..])
                        .map(|(s, e)| (start + s, start + e))
                } else {
                    None
                }
            }
            AnchoredEnd => {
                let lits = &self.ro.suffixes;
                lits.find_end(&text[start..])
                    .map(|(s, e)| (start + s, start + e))
            }
            AhoCorasick => self
                .ro
                .ac
                .as_ref()
                .unwrap()
                .find(&text[start..])
                .map(|m| (start + m.start(), start + m.end())),
        }
    }

    /// Finds the leftmost-first match (start and end) using only the DFA.
    ///
    /// If the result returned indicates that the DFA quit, then another
    /// matching engine should be used.
    #[cfg(feature = "perf-dfa")]
    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn find_dfa_forward(
        &self,
        text: &[u8],
        start: usize,
    ) -> dfa::Result<(usize, usize)> {
        use crate::dfa::Result::*;
        let end = match dfa::Fsm::forward(
            &self.ro.dfa,
            self.cache.value(),
            false,
            text,
            start,
        ) {
            NoMatch(i) => return NoMatch(i),
            Quit => return Quit,
            Match(end) if start == end => return Match((start, start)),
            Match(end) => end,
        };
        // Now run the DFA in reverse to find the start of the match.
        match dfa::Fsm::reverse(
            &self.ro.dfa_reverse,
            self.cache.value(),
            false,
            &text[start..],
            end - start,
        ) {
            Match(s) => Match((start + s, end)),
            NoMatch(i) => NoMatch(i),
            Quit => Quit,
        }
    }

    /// Finds the leftmost-first match (start and end) using only the DFA,
    /// but assumes the regex is anchored at the end and therefore starts at
    /// the end of the regex and matches in reverse.
    ///
    /// If the result returned indicates that the DFA quit, then another
    /// matching engine should be used.
    #[cfg(feature = "perf-dfa")]
    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn find_dfa_anchored_reverse(
        &self,
        text: &[u8],
        start: usize,
    ) -> dfa::Result<(usize, usize)> {
        use crate::dfa::Result::*;
        match dfa::Fsm::reverse(
            &self.ro.dfa_reverse,
            self.cache.value(),
            false,
            &text[start..],
            text.len() - start,
        ) {
            Match(s) => Match((start + s, text.len())),
            NoMatch(i) => NoMatch(i),
            Quit => Quit,
        }
    }

    /// Finds the end of the shortest match using only the DFA.
    #[cfg(feature = "perf-dfa")]
    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn shortest_dfa(&self, text: &[u8], start: usize) -> dfa::Result<usize> {
        dfa::Fsm::forward(&self.ro.dfa, self.cache.value(), true, text, start)
    }

    /// Finds the end of the shortest match using only the DFA by scanning for
    /// suffix literals.
    #[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn shortest_dfa_reverse_suffix(
        &self,
        text: &[u8],
        start: usize,
    ) -> dfa::Result<usize> {
        match self.exec_dfa_reverse_suffix(text, start) {
            None => self.shortest_dfa(text, start),
            Some(r) => r.map(|(_, end)| end),
        }
    }

    /// Finds the end of the shortest match using only the DFA by scanning for
    /// suffix literals. It also reports the start of the match.
    ///
    /// Note that if None is returned, then the optimization gave up to avoid
    /// worst case quadratic behavior. A forward scanning DFA should be tried
    /// next.
    ///
    /// If a match is returned and the full leftmost-first match is desired,
    /// then a forward scan starting from the beginning of the match must be
    /// done.
    ///
    /// If the result returned indicates that the DFA quit, then another
    /// matching engine should be used.
    #[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn exec_dfa_reverse_suffix(
        &self,
        text: &[u8],
        original_start: usize,
    ) -> Option<dfa::Result<(usize, usize)>> {
        use crate::dfa::Result::*;

        let lcs = self.ro.suffixes.lcs();
        debug_assert!(lcs.len() >= 1);
        let mut start = original_start;
        let mut end = start;
        let mut last_literal = start;
        while end <= text.len() {
            last_literal += match lcs.find(&text[last_literal..]) {
                None => return Some(NoMatch(text.len())),
                Some(i) => i,
            };
            end = last_literal + lcs.len();
            match dfa::Fsm::reverse(
                &self.ro.dfa_reverse,
                self.cache.value(),
                false,
                &text[start..end],
                end - start,
            ) {
                Match(0) | NoMatch(0) => return None,
                Match(i) => return Some(Match((start + i, end))),
                NoMatch(i) => {
                    start += i;
                    last_literal += 1;
                    continue;
                }
                Quit => return Some(Quit),
            };
        }
        Some(NoMatch(text.len()))
    }

    /// Finds the leftmost-first match (start and end) using only the DFA
    /// by scanning for suffix literals.
    ///
    /// If the result returned indicates that the DFA quit, then another
    /// matching engine should be used.
    #[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn find_dfa_reverse_suffix(
        &self,
        text: &[u8],
        start: usize,
    ) -> dfa::Result<(usize, usize)> {
        use crate::dfa::Result::*;

        let match_start = match self.exec_dfa_reverse_suffix(text, start) {
            None => return self.find_dfa_forward(text, start),
            Some(Match((start, _))) => start,
            Some(r) => return r,
        };
        // At this point, we've found a match. The only way to quit now
        // without a match is if the DFA gives up (seems unlikely).
        //
        // Now run the DFA forwards to find the proper end of the match.
        // (The suffix literal match can only indicate the earliest
        // possible end location, which may appear before the end of the
        // leftmost-first match.)
        match dfa::Fsm::forward(
            &self.ro.dfa,
            self.cache.value(),
            false,
            text,
            match_start,
        ) {
            NoMatch(_) => panic!("BUG: reverse match implies forward match"),
            Quit => Quit,
            Match(e) => Match((match_start, e)),
        }
    }

    /// Executes the NFA engine to return whether there is a match or not.
    ///
    /// Ideally, we could use shortest_nfa(...).is_some() and get the same
    /// performance characteristics, but regex sets don't have captures, which
    /// shortest_nfa depends on.
    #[cfg(feature = "perf-dfa")]
    fn match_nfa(&self, text: &[u8], start: usize) -> bool {
        self.match_nfa_type(MatchNfaType::Auto, text, start)
    }

    /// Like match_nfa, but allows specification of the type of NFA engine.
    fn match_nfa_type(
        &self,
        ty: MatchNfaType,
        text: &[u8],
        start: usize,
    ) -> bool {
        self.exec_nfa(
            ty,
            &mut [false],
            &mut [],
            true,
            false,
            text,
            start,
            text.len(),
        )
    }

    /// Finds the shortest match using an NFA.
    #[cfg(feature = "perf-dfa")]
    fn shortest_nfa(&self, text: &[u8], start: usize) -> Option<usize> {
        self.shortest_nfa_type(MatchNfaType::Auto, text, start)
    }

    /// Like shortest_nfa, but allows specification of the type of NFA engine.
    fn shortest_nfa_type(
        &self,
        ty: MatchNfaType,
        text: &[u8],
        start: usize,
    ) -> Option<usize> {
        let mut slots = [None, None];
        if self.exec_nfa(
            ty,
            &mut [false],
            &mut slots,
            true,
            true,
            text,
            start,
            text.len(),
        ) {
            slots[1]
        } else {
            None
        }
    }

    /// Like find, but executes an NFA engine.
    fn find_nfa(
        &self,
        ty: MatchNfaType,
        text: &[u8],
        start: usize,
    ) -> Option<(usize, usize)> {
        let mut slots = [None, None];
        if self.exec_nfa(
            ty,
            &mut [false],
            &mut slots,
            false,
            false,
            text,
            start,
            text.len(),
        ) {
            match (slots[0], slots[1]) {
                (Some(s), Some(e)) => Some((s, e)),
                _ => None,
            }
        } else {
            None
        }
    }

    /// Like find_nfa, but fills in captures.
    ///
    /// `slots` should have length equal to `2 * nfa.captures.len()`.
    #[cfg(feature = "perf-dfa")]
    fn captures_nfa(
        &self,
        slots: &mut [Slot],
        text: &[u8],
        start: usize,
    ) -> Option<(usize, usize)> {
        self.captures_nfa_type(
            MatchNfaType::Auto,
            slots,
            text,
            start,
            text.len(),
        )
    }

    /// Like captures_nfa, but allows specification of type of NFA engine.
    fn captures_nfa_type(
        &self,
        ty: MatchNfaType,
        slots: &mut [Slot],
        text: &[u8],
        start: usize,
        end: usize,
    ) -> Option<(usize, usize)> {
        if self.exec_nfa(
            ty,
            &mut [false],
            slots,
            false,
            false,
            text,
            start,
            end,
        ) {
            match (slots[0], slots[1]) {
                (Some(s), Some(e)) => Some((s, e)),
                _ => None,
            }
        } else {
            None
        }
    }

    fn exec_nfa(
        &self,
        mut ty: MatchNfaType,
        matches: &mut [bool],
        slots: &mut [Slot],
        quit_after_match: bool,
        quit_after_match_with_pos: bool,
        text: &[u8],
        start: usize,
        end: usize,
    ) -> bool {
        use self::MatchNfaType::*;
        if let Auto = ty {
            if backtrack::should_exec(self.ro.nfa.len(), text.len()) {
                ty = Backtrack;
            } else {
                ty = PikeVM;
            }
        }
        // The backtracker can't return the shortest match position as it is
        // implemented today. So if someone calls `shortest_match` and we need
        // to run an NFA, then use the PikeVM.
        if quit_after_match_with_pos || ty == PikeVM {
            self.exec_pikevm(
                matches,
                slots,
                quit_after_match,
                text,
                start,
                end,
            )
        } else {
            self.exec_backtrack(matches, slots, text, start, end)
        }
    }

    /// Always run the NFA algorithm.
    fn exec_pikevm(
        &self,
        matches: &mut [bool],
        slots: &mut [Slot],
        quit_after_match: bool,
        text: &[u8],
        start: usize,
        end: usize,
    ) -> bool {
        if self.ro.nfa.uses_bytes() {
            pikevm::Fsm::exec(
                &self.ro.nfa,
                self.cache.value(),
                matches,
                slots,
                quit_after_match,
                ByteInput::new(text, self.ro.nfa.only_utf8),
                start,
                end,
            )
        } else {
            pikevm::Fsm::exec(
                &self.ro.nfa,
                self.cache.value(),
                matches,
                slots,
                quit_after_match,
                CharInput::new(text),
                start,
                end,
            )
        }
    }

    /// Always runs the NFA using bounded backtracking.
    fn exec_backtrack(
        &self,
        matches: &mut [bool],
        slots: &mut [Slot],
        text: &[u8],
        start: usize,
        end: usize,
    ) -> bool {
        if self.ro.nfa.uses_bytes() {
            backtrack::Bounded::exec(
                &self.ro.nfa,
                self.cache.value(),
                matches,
                slots,
                ByteInput::new(text, self.ro.nfa.only_utf8),
                start,
                end,
            )
        } else {
            backtrack::Bounded::exec(
                &self.ro.nfa,
                self.cache.value(),
                matches,
                slots,
                CharInput::new(text),
                start,
                end,
            )
        }
    }

    /// Finds which regular expressions match the given text.
    ///
    /// `matches` should have length equal to the number of regexes being
    /// searched.
    ///
    /// This is only useful when one wants to know which regexes in a set
    /// match some text.
    pub fn many_matches_at(
        &self,
        matches: &mut [bool],
        text: &[u8],
        start: usize,
    ) -> bool {
        use self::MatchType::*;
        if !self.is_anchor_end_match(text) {
            return false;
        }
        match self.ro.match_type {
            #[cfg(feature = "perf-literal")]
            Literal(ty) => {
                debug_assert_eq!(matches.len(), 1);
                matches[0] = self.find_literals(ty, text, start).is_some();
                matches[0]
            }
            #[cfg(feature = "perf-dfa")]
            Dfa | DfaAnchoredReverse | DfaMany => {
                match dfa::Fsm::forward_many(
                    &self.ro.dfa,
                    self.cache.value(),
                    matches,
                    text,
                    start,
                ) {
                    dfa::Result::Match(_) => true,
                    dfa::Result::NoMatch(_) => false,
                    dfa::Result::Quit => self.exec_nfa(
                        MatchNfaType::Auto,
                        matches,
                        &mut [],
                        false,
                        false,
                        text,
                        start,
                        text.len(),
                    ),
                }
            }
            #[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
            DfaSuffix => {
                match dfa::Fsm::forward_many(
                    &self.ro.dfa,
                    self.cache.value(),
                    matches,
                    text,
                    start,
                ) {
                    dfa::Result::Match(_) => true,
                    dfa::Result::NoMatch(_) => false,
                    dfa::Result::Quit => self.exec_nfa(
                        MatchNfaType::Auto,
                        matches,
                        &mut [],
                        false,
                        false,
                        text,
                        start,
                        text.len(),
                    ),
                }
            }
            Nfa(ty) => self.exec_nfa(
                ty,
                matches,
                &mut [],
                false,
                false,
                text,
                start,
                text.len(),
            ),
            Nothing => false,
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn is_anchor_end_match(&self, text: &[u8]) -> bool {
        #[cfg(not(feature = "perf-literal"))]
        fn imp(_: &ExecReadOnly, _: &[u8]) -> bool {
            true
        }

        #[cfg(feature = "perf-literal")]
        fn imp(ro: &ExecReadOnly, text: &[u8]) -> bool {
            // Only do this check if the haystack is big (>1MB).
            if text.len() > (1 << 20) && ro.nfa.is_anchored_end {
                let lcs = ro.suffixes.lcs();
                if lcs.len() >= 1 && !lcs.is_suffix(text) {
                    return false;
                }
            }
            true
        }

        imp(&self.ro, text)
    }

    pub fn capture_name_idx(&self) -> &Arc<HashMap<String, usize>> {
        &self.ro.nfa.capture_name_idx
    }
}

impl<'c> ExecNoSyncStr<'c> {
    pub fn capture_name_idx(&self) -> &Arc<HashMap<String, usize>> {
        self.0.capture_name_idx()
    }
}

impl Exec {
    /// Get a searcher that isn't Sync.
    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub fn searcher(&self) -> ExecNoSync<'_> {
        ExecNoSync {
            ro: &self.ro, // a clone is too expensive here! (and not needed)
            cache: self.pool.get(),
        }
    }

    /// Get a searcher that isn't Sync and can match on &str.
    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub fn searcher_str(&self) -> ExecNoSyncStr<'_> {
        ExecNoSyncStr(self.searcher())
    }

    /// Build a Regex from this executor.
    pub fn into_regex(self) -> re_unicode::Regex {
        re_unicode::Regex::from(self)
    }

    /// Build a RegexSet from this executor.
    pub fn into_regex_set(self) -> re_set::unicode::RegexSet {
        re_set::unicode::RegexSet::from(self)
    }

    /// Build a Regex from this executor that can match arbitrary bytes.
    pub fn into_byte_regex(self) -> re_bytes::Regex {
        re_bytes::Regex::from(self)
    }

    /// Build a RegexSet from this executor that can match arbitrary bytes.
    pub fn into_byte_regex_set(self) -> re_set::bytes::RegexSet {
        re_set::bytes::RegexSet::from(self)
    }

    /// The original regular expressions given by the caller that were
    /// compiled.
    pub fn regex_strings(&self) -> &[String] {
        &self.ro.res
    }

    /// Return a slice of capture names.
    ///
    /// Any capture that isn't named is None.
    pub fn capture_names(&self) -> &[Option<String>] {
        &self.ro.nfa.captures
    }

    /// Return a reference to named groups mapping (from group name to
    /// group position).
    pub fn capture_name_idx(&self) -> &Arc<HashMap<String, usize>> {
        &self.ro.nfa.capture_name_idx
    }

    /// If the number of capture groups in every match is always the same, then
    /// return that number. Otherwise return `None`.
    pub fn static_captures_len(&self) -> Option<usize> {
        self.ro.nfa.static_captures_len
    }
}

impl Clone for Exec {
    fn clone(&self) -> Exec {
        let pool = ExecReadOnly::new_pool(&self.ro);
        Exec { ro: self.ro.clone(), pool }
    }
}

impl ExecReadOnly {
    fn choose_match_type(&self, hint: Option<MatchType>) -> MatchType {
        if let Some(MatchType::Nfa(_)) = hint {
            return hint.unwrap();
        }
        // If the NFA is empty, then we'll never match anything.
        if self.nfa.insts.is_empty() {
            return MatchType::Nothing;
        }
        if let Some(literalty) = self.choose_literal_match_type() {
            return literalty;
        }
        if let Some(dfaty) = self.choose_dfa_match_type() {
            return dfaty;
        }
        // We're so totally hosed.
        MatchType::Nfa(MatchNfaType::Auto)
    }

    /// If a plain literal scan can be used, then a corresponding literal
    /// search type is returned.
    fn choose_literal_match_type(&self) -> Option<MatchType> {
        #[cfg(not(feature = "perf-literal"))]
        fn imp(_: &ExecReadOnly) -> Option<MatchType> {
            None
        }

        #[cfg(feature = "perf-literal")]
        fn imp(ro: &ExecReadOnly) -> Option<MatchType> {
            // If our set of prefixes is complete, then we can use it to find
            // a match in lieu of a regex engine. This doesn't quite work well
            // in the presence of multiple regexes, so only do it when there's
            // one.
            //
            // TODO(burntsushi): Also, don't try to match literals if the regex
            // is partially anchored. We could technically do it, but we'd need
            // to create two sets of literals: all of them and then the subset
            // that aren't anchored. We would then only search for all of them
            // when at the beginning of the input and use the subset in all
            // other cases.
            if ro.res.len() != 1 {
                return None;
            }
            if ro.ac.is_some() {
                return Some(MatchType::Literal(
                    MatchLiteralType::AhoCorasick,
                ));
            }
            if ro.nfa.prefixes.complete() {
                return if ro.nfa.is_anchored_start {
                    Some(MatchType::Literal(MatchLiteralType::AnchoredStart))
                } else {
                    Some(MatchType::Literal(MatchLiteralType::Unanchored))
                };
            }
            if ro.suffixes.complete() {
                return if ro.nfa.is_anchored_end {
                    Some(MatchType::Literal(MatchLiteralType::AnchoredEnd))
                } else {
                    // This case shouldn't happen. When the regex isn't
                    // anchored, then complete prefixes should imply complete
                    // suffixes.
                    //
                    // The above is wrong! This case can happen. While
                    // complete prefixes should imply complete suffixes
                    // here, that doesn't necessarily mean we have a useful
                    // prefix matcher! It could be the case that the literal
                    // searcher decided the prefixes---even though they are
                    // "complete"---weren't good enough and thus created an
                    // empty matcher. If that happens and we return Unanchored
                    // here, then we'll end up using that matcher, which is
                    // very bad because it matches at every position. So...
                    // return None.
                    None
                };
            }
            None
        }

        imp(self)
    }

    /// If a DFA scan can be used, then choose the appropriate DFA strategy.
    fn choose_dfa_match_type(&self) -> Option<MatchType> {
        #[cfg(not(feature = "perf-dfa"))]
        fn imp(_: &ExecReadOnly) -> Option<MatchType> {
            None
        }

        #[cfg(feature = "perf-dfa")]
        fn imp(ro: &ExecReadOnly) -> Option<MatchType> {
            if !dfa::can_exec(&ro.dfa) {
                return None;
            }
            // Regex sets require a slightly specialized path.
            if ro.res.len() >= 2 {
                return Some(MatchType::DfaMany);
            }
            // If the regex is anchored at the end but not the start, then
            // just match in reverse from the end of the haystack.
            if !ro.nfa.is_anchored_start && ro.nfa.is_anchored_end {
                return Some(MatchType::DfaAnchoredReverse);
            }
            #[cfg(feature = "perf-literal")]
            {
                // If there's a longish suffix literal, then it might be faster
                // to look for that first.
                if ro.should_suffix_scan() {
                    return Some(MatchType::DfaSuffix);
                }
            }
            // Fall back to your garden variety forward searching lazy DFA.
            Some(MatchType::Dfa)
        }

        imp(self)
    }

    /// Returns true if the program is amenable to suffix scanning.
    ///
    /// When this is true, as a heuristic, we assume it is OK to quickly scan
    /// for suffix literals and then do a *reverse* DFA match from any matches
    /// produced by the literal scan. (And then followed by a forward DFA
    /// search, since the previously found suffix literal maybe not actually be
    /// the end of a match.)
    ///
    /// This is a bit of a specialized optimization, but can result in pretty
    /// big performance wins if 1) there are no prefix literals and 2) the
    /// suffix literals are pretty rare in the text. (1) is obviously easy to
    /// account for but (2) is harder. As a proxy, we assume that longer
    /// strings are generally rarer, so we only enable this optimization when
    /// we have a meaty suffix.
    #[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
    fn should_suffix_scan(&self) -> bool {
        if self.suffixes.is_empty() {
            return false;
        }
        let lcs_len = self.suffixes.lcs().char_len();
        lcs_len >= 3 && lcs_len > self.dfa.prefixes.lcp().char_len()
    }

    fn new_pool(ro: &Arc<ExecReadOnly>) -> Box<Pool<ProgramCache>> {
        let ro = ro.clone();
        Box::new(Pool::new(Box::new(move || {
            AssertUnwindSafe(RefCell::new(ProgramCacheInner::new(&ro)))
        })))
    }
}

#[derive(Clone, Copy, Debug)]
enum MatchType {
    /// A single or multiple literal search. This is only used when the regex
    /// can be decomposed into a literal search.
    #[cfg(feature = "perf-literal")]
    Literal(MatchLiteralType),
    /// A normal DFA search.
    #[cfg(feature = "perf-dfa")]
    Dfa,
    /// A reverse DFA search starting from the end of a haystack.
    #[cfg(feature = "perf-dfa")]
    DfaAnchoredReverse,
    /// A reverse DFA search with suffix literal scanning.
    #[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
    DfaSuffix,
    /// Use the DFA on two or more regular expressions.
    #[cfg(feature = "perf-dfa")]
    DfaMany,
    /// An NFA variant.
    Nfa(MatchNfaType),
    /// No match is ever possible, so don't ever try to search.
    Nothing,
}

#[derive(Clone, Copy, Debug)]
#[cfg(feature = "perf-literal")]
enum MatchLiteralType {
    /// Match literals anywhere in text.
    Unanchored,
    /// Match literals only at the start of text.
    AnchoredStart,
    /// Match literals only at the end of text.
    AnchoredEnd,
    /// Use an Aho-Corasick automaton. This requires `ac` to be Some on
    /// ExecReadOnly.
    AhoCorasick,
}

#[derive(Clone, Copy, Debug, Eq, PartialEq)]
enum MatchNfaType {
    /// Choose between Backtrack and PikeVM.
    Auto,
    /// NFA bounded backtracking.
    ///
    /// (This is only set by tests, since it never makes sense to always want
    /// backtracking.)
    Backtrack,
    /// The Pike VM.
    ///
    /// (This is only set by tests, since it never makes sense to always want
    /// the Pike VM.)
    PikeVM,
}

/// `ProgramCache` maintains reusable allocations for each matching engine
/// available to a particular program.
///
/// We declare this as unwind safe since it's a cache that's only used for
/// performance purposes. If a panic occurs, it is (or should be) always safe
/// to continue using the same regex object.
pub type ProgramCache = AssertUnwindSafe<RefCell<ProgramCacheInner>>;

#[derive(Debug)]
pub struct ProgramCacheInner {
    pub pikevm: pikevm::Cache,
    pub backtrack: backtrack::Cache,
    #[cfg(feature = "perf-dfa")]
    pub dfa: dfa::Cache,
    #[cfg(feature = "perf-dfa")]
    pub dfa_reverse: dfa::Cache,
}

impl ProgramCacheInner {
    fn new(ro: &ExecReadOnly) -> Self {
        ProgramCacheInner {
            pikevm: pikevm::Cache::new(&ro.nfa),
            backtrack: backtrack::Cache::new(&ro.nfa),
            #[cfg(feature = "perf-dfa")]
            dfa: dfa::Cache::new(&ro.dfa),
            #[cfg(feature = "perf-dfa")]
            dfa_reverse: dfa::Cache::new(&ro.dfa_reverse),
        }
    }
}

/// Alternation literals checks if the given HIR is a simple alternation of
/// literals, and if so, returns them. Otherwise, this returns None.
#[cfg(feature = "perf-literal")]
fn alternation_literals(expr: &Hir) -> Option<Vec<Vec<u8>>> {
    use regex_syntax::hir::{HirKind, Literal};

    // This is pretty hacky, but basically, if `is_alternation_literal` is
    // true, then we can make several assumptions about the structure of our
    // HIR. This is what justifies the `unreachable!` statements below.
    //
    // This code should be refactored once we overhaul this crate's
    // optimization pipeline, because this is a terribly inflexible way to go
    // about things.

    if !expr.properties().is_alternation_literal() {
        return None;
    }
    let alts = match *expr.kind() {
        HirKind::Alternation(ref alts) => alts,
        _ => return None, // one literal isn't worth it
    };

    let mut lits = vec![];
    for alt in alts {
        let mut lit = vec![];
        match *alt.kind() {
            HirKind::Literal(Literal(ref bytes)) => {
                lit.extend_from_slice(bytes)
            }
            HirKind::Concat(ref exprs) => {
                for e in exprs {
                    match *e.kind() {
                        HirKind::Literal(Literal(ref bytes)) => {
                            lit.extend_from_slice(bytes);
                        }
                        _ => unreachable!("expected literal, got {:?}", e),
                    }
                }
            }
            _ => unreachable!("expected literal or concat, got {:?}", alt),
        }
        lits.push(lit);
    }
    Some(lits)
}

#[cfg(not(feature = "perf-literal"))]
fn literal_analysis(_: &Hir) -> (literal::Seq, literal::Seq) {
    (literal::Seq::infinite(), literal::Seq::infinite())
}

#[cfg(feature = "perf-literal")]
fn literal_analysis(expr: &Hir) -> (literal::Seq, literal::Seq) {
    const ATTEMPTS: [(usize, usize); 3] = [(5, 50), (4, 30), (3, 20)];

    let mut prefixes = literal::Extractor::new()
        .kind(literal::ExtractKind::Prefix)
        .extract(expr);
    for (keep, limit) in ATTEMPTS {
        let len = match prefixes.len() {
            None => break,
            Some(len) => len,
        };
        if len <= limit {
            break;
        }
        prefixes.keep_first_bytes(keep);
        prefixes.minimize_by_preference();
    }

    let mut suffixes = literal::Extractor::new()
        .kind(literal::ExtractKind::Suffix)
        .extract(expr);
    for (keep, limit) in ATTEMPTS {
        let len = match suffixes.len() {
            None => break,
            Some(len) => len,
        };
        if len <= limit {
            break;
        }
        suffixes.keep_last_bytes(keep);
        suffixes.minimize_by_preference();
    }

    (prefixes, suffixes)
}

#[cfg(test)]
mod test {
    #[test]
    fn uppercut_s_backtracking_bytes_default_bytes_mismatch() {
        use crate::internal::ExecBuilder;

        let backtrack_bytes_re = ExecBuilder::new("^S")
            .bounded_backtracking()
            .only_utf8(false)
            .build()
            .map(|exec| exec.into_byte_regex())
            .map_err(|err| format!("{}", err))
            .unwrap();

        let default_bytes_re = ExecBuilder::new("^S")
            .only_utf8(false)
            .build()
            .map(|exec| exec.into_byte_regex())
            .map_err(|err| format!("{}", err))
            .unwrap();

        let input = vec![83, 83];

        let s1 = backtrack_bytes_re.split(&input);
        let s2 = default_bytes_re.split(&input);
        for (chunk1, chunk2) in s1.zip(s2) {
            assert_eq!(chunk1, chunk2);
        }
    }

    #[test]
    fn unicode_lit_star_backtracking_utf8bytes_default_utf8bytes_mismatch() {
        use crate::internal::ExecBuilder;

        let backtrack_bytes_re = ExecBuilder::new(r"^(?u:\*)")
            .bounded_backtracking()
            .bytes(true)
            .build()
            .map(|exec| exec.into_regex())
            .map_err(|err| format!("{}", err))
            .unwrap();

        let default_bytes_re = ExecBuilder::new(r"^(?u:\*)")
            .bytes(true)
            .build()
            .map(|exec| exec.into_regex())
            .map_err(|err| format!("{}", err))
            .unwrap();

        let input = "**";

        let s1 = backtrack_bytes_re.split(input);
        let s2 = default_bytes_re.split(input);
        for (chunk1, chunk2) in s1.zip(s2) {
            assert_eq!(chunk1, chunk2);
        }
    }
}