1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License..

#![allow(dead_code)]

use list::{LinkedList, Node};
use std::cell::RefCell;
use std::collections::HashMap;
use std::ptr::NonNull;
use std::sync::Arc;

mod list;

pub type NodeRef<T> = Arc<RefCell<T>>;

#[derive(Debug)]
struct LruEntry<T> {
    node_ref: NonNull<Node<u64>>,
    value: NodeRef<T>,
}

impl<T> LruEntry<T> {
    fn new(node_ref: NonNull<Node<u64>>, value: NodeRef<T>) -> LruEntry<T> {
        LruEntry { node_ref, value }
    }
}

pub struct Iter<'a, T: 'a> {
    iter: list::Iter<'a, u64>,
    map: &'a HashMap<u64, LruEntry<T>>,
}

#[derive(Debug)]
pub struct LruCache<T> {
    list: LinkedList<u64>,
    map: HashMap<u64, LruEntry<T>>,
    max_size: usize,
}

impl<T> LruCache<T> {
    #[inline]
    pub fn new(capacity: usize) -> LruCache<T> {
        LruCache {
            list: LinkedList::new(),
            map: HashMap::with_capacity(capacity),
            max_size: capacity,
        }
    }

    /// Return the maximum number of key-value pairs the cache can hold.
    #[inline]
    pub fn capacity(&self) -> usize {
        self.max_size
    }

    /// Returns `true` if the cache is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.list.is_empty()
    }

    /// Returns the length of the cache.
    #[inline]
    pub fn len(&self) -> usize {
        self.list.len()
    }

    /// Adds an element first in the cache.
    pub fn push(&mut self, key: u64, value: NodeRef<T>) -> bool {
        let is_none = self.map.get(&key).is_none();
        if is_none {
            self.list.push_front(key);
            let node_ref = unsafe { self.list.head_node_ref().unwrap() };
            self.map.insert(key, LruEntry::new(node_ref, value));
        }
        is_none
    }

    /// Returns the value corresponding to the key.
    #[inline]
    pub fn find(&self, key: u64) -> Option<NodeRef<T>> {
        self.map.get(&key).map(|entry| entry.value.clone())
    }

    /// Removes the first element and returns it, or `None` if the cache is emptry.
    pub fn pop_front(&mut self) -> Option<NodeRef<T>> {
        let key = self.list.pop_front()?;
        self.map.remove(&key).map(|entry| entry.value)
    }

    /// Removes the last element and returns it, or `None` if the cache is emptry.
    pub fn pop_back(&mut self) -> Option<NodeRef<T>> {
        let key = self.list.pop_back()?;
        self.map.remove(&key).map(|entry| entry.value)
    }

    /// Provides a reference to the front element, or `None` if the cache is empty.
    pub fn front(&self) -> Option<&NodeRef<T>> {
        let key = self.list.front()?;
        self.map.get(key).map(|entry| &entry.value)
    }

    /// Provides a reference to the back element, or `None` if the cache is empty.
    pub fn back(&self) -> Option<&NodeRef<T>> {
        let key = self.list.back()?;
        self.map.get(key).map(|entry| &entry.value)
    }

    /// Move the element corresponding to the key to the head.
    pub fn move_to_head(&mut self, key: u64) {
        if let Some(entry) = self.map.get_mut(&key) {
            unsafe {
                self.list.move_to_head(entry.node_ref);
            }
        }
    }

    /// Move the element corresponding to the key to the tail.
    pub fn move_to_tail(&mut self, key: u64) {
        if let Some(entry) = self.map.get_mut(&key) {
            unsafe {
                self.list.move_to_tail(entry.node_ref);
            }
        }
    }

    /// Change the number of key-value pairs the cache can hold.
    pub fn change_capacity(&mut self, capacity: usize) {
        if capacity < self.len() {
            for _ in capacity..self.len() {
                let _ = self.pop_back();
            }
        }
        self.max_size = capacity;
    }

    /// Removes all elements from the cache.
    #[inline]
    pub fn clear(&mut self) {
        self.list.clear();
        self.map.clear();
    }

    /// Provides a forward iterator.
    #[inline]
    pub fn iter(&self) -> Iter<'_, T> {
        Iter {
            iter: self.list.iter(),
            map: &self.map,
        }
    }
}

impl<'a, T> Iterator for Iter<'a, T> {
    type Item = &'a NodeRef<T>;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let key = self.iter.next()?;
        self.map.get(key).map(|entry| &entry.value)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<T> DoubleEndedIterator for Iter<'_, T> {
    #[inline]
    fn next_back(&mut self) -> Option<Self::Item> {
        let (len, _) = self.iter.size_hint();
        if len == 0 {
            None
        } else {
            let key = self.iter.next_back()?;
            self.map.get(key).map(|entry| &entry.value)
        }
    }
}

pub struct IntoIter<T> {
    cache: LruCache<T>,
}

impl<T> Iterator for IntoIter<T> {
    type Item = NodeRef<T>;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.cache.pop_front()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.cache.len(), Some(self.cache.len()))
    }
}

impl<T> DoubleEndedIterator for IntoIter<T> {
    #[inline]
    fn next_back(&mut self) -> Option<Self::Item> {
        self.cache.pop_back()
    }
}

impl<T> IntoIterator for LruCache<T> {
    type Item = NodeRef<T>;
    type IntoIter = IntoIter<T>;

    /// Consumes the list into an iterator yielding elements by value.
    #[inline]
    fn into_iter(self) -> IntoIter<T> {
        IntoIter { cache: self }
    }
}