1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
//! Neural Network module
//!
//! Contains implementation of simple feed forward neural network.
//!
//! # Usage
//!
//! ```
//! use rusty_machine::learning::nnet::{NeuralNet, BCECriterion};
//! use rusty_machine::learning::toolkit::regularization::Regularization;
//! use rusty_machine::learning::toolkit::activ_fn::Sigmoid;
//! use rusty_machine::learning::optim::grad_desc::StochasticGD;
//! use rusty_machine::linalg::Matrix;
//! use rusty_machine::learning::SupModel;
//!
//! let inputs = Matrix::new(5,3, vec![1.,1.,1.,2.,2.,2.,3.,3.,3.,
//! 4.,4.,4.,5.,5.,5.,]);
//! let targets = Matrix::new(5,3, vec![1.,0.,0.,0.,1.,0.,0.,0.,1.,
//! 0.,0.,1.,0.,0.,1.]);
//!
//! // Set the layer sizes - from input to output
//! let layers = &[3,5,11,7,3];
//!
//! // Choose the BCE criterion with L2 regularization (`lambda=0.1`).
//! let criterion = BCECriterion::new(Regularization::L2(0.1));
//!
//! // We will create a multilayer perceptron and just use the default stochastic gradient descent.
//! let mut model = NeuralNet::mlp(layers, criterion, StochasticGD::default(), Sigmoid);
//!
//! // Train the model!
//! model.train(&inputs, &targets).unwrap();
//!
//! let test_inputs = Matrix::new(2,3, vec![1.5,1.5,1.5,5.1,5.1,5.1]);
//!
//! // And predict new output from the test inputs
//! let outputs = model.predict(&test_inputs).unwrap();
//! ```
//!
//! The neural networks are specified via a criterion - similar to
//! [Torch](https://github.com/torch/nn/blob/master/doc/criterion.md).
//! The criterions specify a cost function and any regularization.
//!
//! You can define your own criterion by implementing the `Criterion`
//! trait with a concrete `CostFunc`.
pub mod net_layer;
use linalg::{Matrix, MatrixSlice};
use rulinalg::utils;
use learning::{LearningResult, SupModel};
use learning::error::{Error, ErrorKind};
use learning::toolkit::activ_fn;
use learning::toolkit::activ_fn::ActivationFunc;
use learning::toolkit::cost_fn;
use learning::toolkit::cost_fn::CostFunc;
use learning::toolkit::regularization::Regularization;
use learning::optim::{Optimizable, OptimAlgorithm};
use learning::optim::grad_desc::StochasticGD;
use self::net_layer::NetLayer;
/// Neural Network Model
///
/// The Neural Network struct specifies a `Criterion` and
/// a gradient descent algorithm.
#[derive(Debug)]
pub struct NeuralNet<T, A>
where T: Criterion,
A: OptimAlgorithm<BaseNeuralNet<T>>
{
base: BaseNeuralNet<T>,
alg: A,
}
/// Supervised learning for the Neural Network.
///
/// The model is trained using back propagation.
impl<T, A> SupModel<Matrix<f64>, Matrix<f64>> for NeuralNet<T, A>
where T: Criterion,
A: OptimAlgorithm<BaseNeuralNet<T>>
{
/// Predict neural network output using forward propagation.
fn predict(&self, inputs: &Matrix<f64>) -> LearningResult<Matrix<f64>> {
self.base.forward_prop(inputs)
}
/// Train the model using gradient optimization and back propagation.
fn train(&mut self, inputs: &Matrix<f64>, targets: &Matrix<f64>) -> LearningResult<()> {
let optimal_w = self.alg.optimize(&self.base, &self.base.weights, inputs, targets);
self.base.weights = optimal_w;
Ok(())
}
}
impl NeuralNet<BCECriterion, StochasticGD> {
/// Creates a neural network with the specified layer sizes.
///
/// The layer sizes slice should include the input, hidden layers, and output layer sizes.
/// The type of activation function must be specified.
///
/// Uses the default settings (stochastic gradient descent and sigmoid activation function).
///
/// # Examples
///
/// ```
/// use rusty_machine::learning::nnet::NeuralNet;
///
/// // Create a neural net with 4 layers, 3 neurons in each.
/// let layers = &[3; 4];
/// let mut net = NeuralNet::default(layers);
/// ```
pub fn default(layer_sizes: &[usize]) -> NeuralNet<BCECriterion, StochasticGD> {
NeuralNet {
base: BaseNeuralNet::default(layer_sizes, activ_fn::Sigmoid),
alg: StochasticGD::default(),
}
}
}
impl<T, A> NeuralNet<T, A>
where T: Criterion,
A: OptimAlgorithm<BaseNeuralNet<T>>
{
/// Create a new neural network with no layers
///
/// # Examples
///
/// ```
/// use rusty_machine::learning::nnet::BCECriterion;
/// use rusty_machine::learning::nnet::NeuralNet;
/// use rusty_machine::learning::optim::grad_desc::StochasticGD;
///
/// // Create a an empty neural net
/// let mut net = NeuralNet::new(BCECriterion::default(), StochasticGD::default());
/// ```
pub fn new(criterion: T, alg: A) -> NeuralNet<T, A> {
NeuralNet {
base: BaseNeuralNet::new(criterion),
alg: alg,
}
}
/// Create a multilayer perceptron with the specified layer sizes.
///
/// The layer sizes slice should include the input, hidden layers, and output layer sizes.
/// The type of activation function must be specified.
///
/// Currently defaults to simple batch Gradient Descent for optimization.
///
/// # Examples
///
/// ```
/// use rusty_machine::learning::nnet::BCECriterion;
/// use rusty_machine::learning::nnet::NeuralNet;
/// use rusty_machine::learning::toolkit::activ_fn::Sigmoid;
/// use rusty_machine::learning::optim::grad_desc::StochasticGD;
///
/// // Create a neural net with 4 layers, 3 neurons in each.
/// let layers = &[3; 4];
/// let mut net = NeuralNet::mlp(layers, BCECriterion::default(), StochasticGD::default(), Sigmoid);
/// ```
pub fn mlp<U>(layer_sizes: &[usize], criterion: T, alg: A, activ_fn: U) -> NeuralNet<T, A>
where U: ActivationFunc + 'static {
NeuralNet {
base: BaseNeuralNet::mlp(layer_sizes, criterion, activ_fn),
alg: alg,
}
}
/// Adds the specified layer to the end of the network
///
/// # Examples
///
/// ```
/// use rusty_machine::linalg::BaseMatrix;
/// use rusty_machine::learning::nnet::BCECriterion;
/// use rusty_machine::learning::nnet::NeuralNet;
/// use rusty_machine::learning::nnet::net_layer::Linear;
/// use rusty_machine::learning::optim::grad_desc::StochasticGD;
///
/// // Create a new neural net
/// let mut net = NeuralNet::new(BCECriterion::default(), StochasticGD::default());
///
/// // Give net an input layer of size 3, hidden layer of size 4, and output layer of size 5
/// // This net will not apply any activation function to the Linear layer outputs
/// net.add(Box::new(Linear::new(3, 4)))
/// .add(Box::new(Linear::new(4, 5)));
/// ```
pub fn add<'a>(&'a mut self, layer: Box<dyn NetLayer>) -> &'a mut NeuralNet<T, A> {
self.base.add(layer);
self
}
/// Adds multiple layers to the end of the network
///
/// # Examples
///
/// ```
/// use rusty_machine::linalg::BaseMatrix;
/// use rusty_machine::learning::nnet::BCECriterion;
/// use rusty_machine::learning::nnet::NeuralNet;
/// use rusty_machine::learning::nnet::net_layer::{NetLayer, Linear};
/// use rusty_machine::learning::toolkit::activ_fn::Sigmoid;
/// use rusty_machine::learning::optim::grad_desc::StochasticGD;
///
/// // Create a new neural net
/// let mut net = NeuralNet::new(BCECriterion::default(), StochasticGD::default());
///
/// let linear_sig: Vec<Box<NetLayer>> = vec![Box::new(Linear::new(5, 5)), Box::new(Sigmoid)];
///
/// // Give net a layer of size 5, followed by a Sigmoid activation function
/// net.add_layers(linear_sig);
/// ```
pub fn add_layers<'a, U>(&'a mut self, layers: U) -> &'a mut NeuralNet<T, A>
where U: IntoIterator<Item = Box<dyn NetLayer>> {
self.base.add_layers(layers);
self
}
/// Gets matrix of weights between specified layer and forward layer.
///
/// # Examples
///
/// ```
/// use rusty_machine::linalg::BaseMatrix;
/// use rusty_machine::learning::nnet::NeuralNet;
///
/// // Create a neural net with 4 layers, 3 neurons in each.
/// let layers = &[3; 4];
/// let mut net = NeuralNet::default(layers);
///
/// let w = &net.get_net_weights(2);
///
/// // We add a bias term to the weight matrix
/// assert_eq!(w.rows(), 4);
/// assert_eq!(w.cols(), 3);
/// ```
pub fn get_net_weights(&self, idx: usize) -> MatrixSlice<f64> {
self.base.get_layer_weights(&self.base.weights[..], idx)
}
}
/// Base Neural Network struct
///
/// This struct cannot be instantiated and is used internally only.
#[derive(Debug)]
pub struct BaseNeuralNet<T: Criterion> {
layers: Vec<Box<dyn NetLayer>>,
weights: Vec<f64>,
criterion: T,
}
impl BaseNeuralNet<BCECriterion> {
/// Creates a base neural network with the specified layer sizes.
fn default<U>(layer_sizes: &[usize], activ_fn: U) -> BaseNeuralNet<BCECriterion>
where U: ActivationFunc + 'static {
BaseNeuralNet::mlp(layer_sizes, BCECriterion::default(), activ_fn)
}
}
impl<T: Criterion> BaseNeuralNet<T> {
/// Create a base neural network with no layers
fn new(criterion: T) -> BaseNeuralNet<T> {
BaseNeuralNet {
layers: Vec::new(),
weights: Vec::new(),
criterion: criterion
}
}
/// Create a multilayer perceptron with the specified layer sizes.
fn mlp<U>(layer_sizes: &[usize], criterion: T, activ_fn: U) -> BaseNeuralNet<T>
where U: ActivationFunc + 'static {
let mut mlp = BaseNeuralNet {
layers: Vec::with_capacity(2*(layer_sizes.len()-1)),
weights: Vec::new(),
criterion: criterion
};
for shape in layer_sizes.windows(2) {
mlp.add(Box::new(net_layer::Linear::new(shape[0], shape[1])));
mlp.add(Box::new(activ_fn.clone()));
}
mlp
}
/// Adds the specified layer to the end of the network
fn add<'a>(&'a mut self, layer: Box<dyn NetLayer>) -> &'a mut BaseNeuralNet<T> {
self.weights.extend_from_slice(&layer.default_params());
self.layers.push(layer);
self
}
/// Adds multiple layers to the end of the network
fn add_layers<'a, U>(&'a mut self, layers: U) -> &'a mut BaseNeuralNet<T>
where U: IntoIterator<Item = Box<dyn NetLayer>>
{
for layer in layers {
self.add(layer);
}
self
}
/// Gets matrix of weights for the specified layer for the weights.
fn get_layer_weights(&self, weights: &[f64], idx: usize) -> MatrixSlice<f64> {
debug_assert!(idx < self.layers.len());
// Check that the weights are the right size.
let full_size: usize = self.layers.iter().map(|l| l.num_params()).sum();
debug_assert_eq!(full_size, weights.len());
let start: usize = self.layers.iter().take(idx).map(|l| l.num_params()).sum();
let shape = self.layers[idx].param_shape();
unsafe {
MatrixSlice::from_raw_parts(weights.as_ptr().offset(start as isize),
shape.0,
shape.1,
shape.1)
}
}
/// Compute the gradient using the back propagation algorithm.
fn compute_grad(&self,
weights: &[f64],
inputs: &Matrix<f64>,
targets: &Matrix<f64>)
-> (f64, Vec<f64>) {
let mut gradients = Vec::with_capacity(weights.len());
unsafe {
gradients.set_len(weights.len());
}
// activations[i] is the output of layer[i]
let mut activations = Vec::with_capacity(self.layers.len());
// params[i] is the weights for layer[i]
let mut params = Vec::with_capacity(self.layers.len());
// Forward propagation
let mut index = 0;
for (i, layer) in self.layers.iter().enumerate() {
let shape = layer.param_shape();
let slice = unsafe {
MatrixSlice::from_raw_parts(weights.as_ptr().offset(index as isize),
shape.0,
shape.1,
shape.1)
};
let output = if i == 0 {
layer.forward(inputs, slice).unwrap()
} else {
layer.forward(activations.last().unwrap(), slice).unwrap()
};
activations.push(output);
params.push(slice);
index += layer.num_params();
}
let output = activations.last().unwrap();
// Backward propagation
// The gradient with respect to the current layer's output
let mut out_grad = self.criterion.cost_grad(output, targets);
// at this point index == weights.len()
for (i, layer) in self.layers.iter().enumerate().rev() {
let activation = if i == 0 {inputs} else {&activations[i-1]};
let result = &activations[i];
index -= layer.num_params();
let grad_params = &mut gradients[index..index+layer.num_params()];
grad_params.copy_from_slice(layer.back_params(&out_grad, activation, result, params[i]).data());
out_grad = layer.back_input(&out_grad, activation, result, params[i]);
}
let mut cost = self.criterion.cost(output, targets);
if self.criterion.is_regularized() {
let all_params = unsafe {
MatrixSlice::from_raw_parts(weights.as_ptr(), weights.len(), 1, 1)
};
utils::in_place_vec_bin_op(&mut gradients,
self.criterion.reg_cost_grad(all_params).data(),
|x, &y| *x = *x + y);
cost += self.criterion.reg_cost(all_params);
}
(cost, gradients)
}
/// Forward propagation of the model weights to get the outputs.
fn forward_prop(&self, inputs: &Matrix<f64>) -> LearningResult<Matrix<f64>> {
if self.layers.is_empty() {
return Ok(inputs.clone());
}
let mut outputs = unsafe {
let shape = self.layers[0].param_shape();
let slice = MatrixSlice::from_raw_parts(self.weights.as_ptr(),
shape.0,
shape.1,
shape.1);
self.layers[0].forward(inputs, slice)?
};
let mut index = self.layers[0].num_params();
for layer in self.layers.iter().skip(1) {
let shape = layer.param_shape();
let slice = unsafe {
MatrixSlice::from_raw_parts(self.weights.as_ptr().offset(index as isize),
shape.0,
shape.1,
shape.1)
};
outputs = match layer.forward(&outputs, slice) {
Ok(act) => act,
Err(_) => {return Err(Error::new(ErrorKind::InvalidParameters,
"The network's layers do not line up correctly."))}
};
index += layer.num_params();
}
Ok(outputs)
}
}
/// Compute the gradient of the Neural Network using the
/// back propagation algorithm.
impl<T: Criterion> Optimizable for BaseNeuralNet<T> {
type Inputs = Matrix<f64>;
type Targets = Matrix<f64>;
/// Compute the gradient of the neural network.
fn compute_grad(&self,
params: &[f64],
inputs: &Matrix<f64>,
targets: &Matrix<f64>)
-> (f64, Vec<f64>) {
self.compute_grad(params, inputs, targets)
}
}
/// Criterion for Neural Networks
///
/// Specifies an activation function and a cost function.
pub trait Criterion {
/// The cost function for the criterion.
type Cost: CostFunc<Matrix<f64>>;
/// The cost function.
///
/// Returns a scalar cost.
fn cost(&self, outputs: &Matrix<f64>, targets: &Matrix<f64>) -> f64 {
Self::Cost::cost(outputs, targets)
}
/// The gradient of the cost function.
///
/// Returns a matrix of cost gradients.
fn cost_grad(&self, outputs: &Matrix<f64>, targets: &Matrix<f64>) -> Matrix<f64> {
Self::Cost::grad_cost(outputs, targets)
}
/// Returns the regularization for this criterion.
///
/// Will return `Regularization::None` by default.
fn regularization(&self) -> Regularization<f64> {
Regularization::None
}
/// Checks if the current criterion includes regularization.
///
/// Will return `false` by default.
fn is_regularized(&self) -> bool {
match self.regularization() {
Regularization::None => false,
_ => true,
}
}
/// Returns the regularization cost for the criterion.
///
/// Will return `0` by default.
///
/// This method will not be invoked by the neural network
/// if there is explicitly no regularization.
fn reg_cost(&self, reg_weights: MatrixSlice<f64>) -> f64 {
self.regularization().reg_cost(reg_weights)
}
/// Returns the regularization gradient for the criterion.
///
/// Will return a matrix of zeros by default.
///
/// This method will not be invoked by the neural network
/// if there is explicitly no regularization.
fn reg_cost_grad(&self, reg_weights: MatrixSlice<f64>) -> Matrix<f64> {
self.regularization().reg_grad(reg_weights)
}
}
/// The binary cross entropy criterion.
///
/// Uses the Sigmoid activation function and the
/// cross entropy error.
#[derive(Clone, Copy, Debug)]
pub struct BCECriterion {
regularization: Regularization<f64>,
}
impl Criterion for BCECriterion {
type Cost = cost_fn::CrossEntropyError;
fn regularization(&self) -> Regularization<f64> {
self.regularization
}
}
/// Creates an MSE Criterion without any regularization.
impl Default for BCECriterion {
fn default() -> Self {
BCECriterion { regularization: Regularization::None }
}
}
impl BCECriterion {
/// Constructs a new BCECriterion with the given regularization.
///
/// # Examples
///
/// ```
/// use rusty_machine::learning::nnet::BCECriterion;
/// use rusty_machine::learning::toolkit::regularization::Regularization;
///
/// // Create a new BCE criterion with L2 regularization of 0.3.
/// let criterion = BCECriterion::new(Regularization::L2(0.3f64));
/// ```
pub fn new(regularization: Regularization<f64>) -> Self {
BCECriterion { regularization: regularization }
}
}
/// The mean squared error criterion.
///
/// Uses the Linear activation function and the
/// mean squared error.
#[derive(Clone, Copy, Debug)]
pub struct MSECriterion {
regularization: Regularization<f64>,
}
impl Criterion for MSECriterion {
type Cost = cost_fn::MeanSqError;
fn regularization(&self) -> Regularization<f64> {
self.regularization
}
}
/// Creates an MSE Criterion without any regularization.
impl Default for MSECriterion {
fn default() -> Self {
MSECriterion { regularization: Regularization::None }
}
}
impl MSECriterion {
/// Constructs a new BCECriterion with the given regularization.
///
/// # Examples
///
/// ```
/// use rusty_machine::learning::nnet::MSECriterion;
/// use rusty_machine::learning::toolkit::regularization::Regularization;
///
/// // Create a new MSE criterion with L2 regularization of 0.3.
/// let criterion = MSECriterion::new(Regularization::L2(0.3f64));
/// ```
pub fn new(regularization: Regularization<f64>) -> Self {
MSECriterion { regularization: regularization }
}
}