1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
// This file is part of the open-source port of SeetaFace engine, which originally includes three modules:
//      SeetaFace Detection, SeetaFace Alignment, and SeetaFace Identification.
//
// This file is part of the SeetaFace Detection module, containing codes implementing the face detection method described in the following paper:
//
//      Funnel-structured cascade for multi-view face detection with alignment awareness,
//      Shuzhe Wu, Meina Kan, Zhenliang He, Shiguang Shan, Xilin Chen.
//      In Neurocomputing (under review)
//
// Copyright (C) 2016, Visual Information Processing and Learning (VIPL) group,
// Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
//
// As an open-source face recognition engine: you can redistribute SeetaFace source codes
// and/or modify it under the terms of the BSD 2-Clause License.
//
// You should have received a copy of the BSD 2-Clause License along with the software.
// If not, see < https://opensource.org/licenses/BSD-2-Clause>.

use std::cmp::Ordering::*;
use std::{cmp, ptr};

use crate::classifier::{Classifier, Score, SurfMlpBuffers};
use crate::common::{resize_image, FaceInfo, ImageData, ImagePyramid, Rectangle, Seq};
use crate::feat::FeatureMap;
use crate::feat::LabBoostedFeatureMap;
use crate::feat::SurfMlpFeatureMap;
use crate::model::Model;
use crate::Detector;

const FUST_MIN_WINDOW_SIZE: u32 = 20;

impl Detector for FuStDetector {
    fn detect(&mut self, image: &ImageData) -> Vec<FaceInfo> {
        if !is_legal_image(image) {
            panic!("Illegal image: {:?}", image);
        }

        let mut min_img_size = cmp::min(image.height(), image.width());
        if self.max_face_size > 0 {
            min_img_size = cmp::min(self.max_face_size as u32, min_img_size);
        }

        const K_WND_SIZE: f32 = 40.0;

        let mut image_pyramid = ImagePyramid::new();
        image_pyramid.set_image_1x(image.data(), image.width(), image.height());
        // TODO: uncomment (expect perf hit)
        //        image_pyramid.set_max_scale(K_WND_SIZE / self.min_face_size as f32);
        image_pyramid.set_min_scale(K_WND_SIZE / min_img_size as f32);
        image_pyramid.set_scale_step(self.image_pyramid_scale_factor);
        self.set_window_size(K_WND_SIZE as u32);

        self.detect_impl(&mut image_pyramid)
            .into_iter()
            .filter(|x| x.score() >= self.cls_thresh)
            .collect()
    }

    fn set_window_size(&mut self, wnd_size: u32) {
        if wnd_size < FUST_MIN_WINDOW_SIZE {
            panic!("Illegal window size: {}", wnd_size);
        }
        self.wnd_size = wnd_size;
    }

    fn set_slide_window_step(&mut self, step_x: u32, step_y: u32) {
        if step_x <= 0 {
            panic!("Illegal horizontal step: {}", step_x);
        }
        if step_y <= 0 {
            panic!("Illegal vertical step: {}", step_y);
        }
        self.slide_wnd_step_x = step_x;
        self.slide_wnd_step_y = step_y;
    }

    fn set_min_face_size(&mut self, min_face_size: u32) {
        if min_face_size < FUST_MIN_WINDOW_SIZE {
            panic!("Illegal min face size: {}", min_face_size);
        }
        self.min_face_size = min_face_size as i32;
    }

    #[inline]
    fn set_max_face_size(&mut self, max_face_size: u32) {
        self.max_face_size = max_face_size as i32;
    }

    fn set_pyramid_scale_factor(&mut self, scale_factor: f32) {
        if scale_factor < 0.01 || scale_factor > 0.99 {
            panic!("Illegal scale factor: {}", scale_factor);
        }
        self.image_pyramid_scale_factor = scale_factor;
    }

    fn set_score_thresh(&mut self, thresh: f64) {
        if thresh <= 0.0 {
            panic!("Illegal threshold: {}", thresh);
        }
        self.cls_thresh = thresh;
    }
}

#[inline]
fn is_legal_image(image: &ImageData) -> bool {
    image.num_channels() == 1 && image.width() > 0 && image.height() > 0
}

pub struct FuStDetector {
    feature_maps: FeatureMaps,
    model: Model,
    wnd_data_buf: Vec<u8>,
    wnd_data: Vec<u8>,
    wnd_size: u32,
    slide_wnd_step_x: u32,
    slide_wnd_step_y: u32,
    min_face_size: i32,
    max_face_size: i32,
    cls_thresh: f64,
    image_pyramid_scale_factor: f32,
}

struct FeatureMaps {
    lab_boosted: LabBoostedFeatureMap,
    surf_mlp: SurfMlpFeatureMap,
    surf_buf: SurfMlpBuffers,
}

impl FuStDetector {
    pub fn new(model: Model) -> Self {
        let wnd_size = 40;
        let slide_wnd_step_x = 4;
        let slide_wnd_step_y = 4;

        FuStDetector {
            feature_maps: FeatureMaps {
                lab_boosted: LabBoostedFeatureMap::new(),
                surf_mlp: SurfMlpFeatureMap::new(),
                surf_buf: SurfMlpBuffers::new(),
            },
            model,
            wnd_data_buf: vec![0; (wnd_size * wnd_size) as usize],
            wnd_data: vec![0; (wnd_size * wnd_size) as usize],
            wnd_size,
            slide_wnd_step_x,
            slide_wnd_step_y,
            min_face_size: 20,
            max_face_size: -1,
            cls_thresh: 3.85,
            image_pyramid_scale_factor: 0.8,
        }
    }

    fn feature_map_for_classifier<'a>(
        classifier: &Classifier,
        maps: &'a mut FeatureMaps,
    ) -> &'a mut dyn FeatureMap {
        match classifier {
            Classifier::LabBoosted(_) => &mut maps.lab_boosted,
            Classifier::SurfMlp(_) => &mut maps.surf_mlp,
        }
    }

    fn classify_with_classifier(
        classifier: &Classifier,
        output: Option<&mut Vec<f32>>,
        maps: &mut FeatureMaps,
        roi: Rectangle,
    ) -> Score {
        match classifier {
            Classifier::SurfMlp(c) => {
                c.classify(output, &mut maps.surf_buf, &mut maps.surf_mlp, roi)
            }
            Classifier::LabBoosted(c) => c.classify(&mut maps.lab_boosted, roi),
        }
    }

    fn get_window_data(&mut self, img: &ImageData, wnd: &mut Rectangle) {
        let roi = wnd;

        let roi_width = roi.width() as i32;
        let roi_height = roi.height() as i32;
        let img_width = img.width() as i32;
        let img_height = img.height() as i32;

        let pad_right = cmp::max(roi.x() + roi_width - img_width, 0);
        let pad_left = if roi.x() >= 0 {
            0
        } else {
            let t = roi.x();
            roi.set_x(0);
            -t
        };
        let pad_bottom = cmp::max(roi.y() + roi_height - img_height, 0);
        let pad_top = if roi.y() >= 0 {
            0
        } else {
            let t = roi.y();
            roi.set_y(0);
            -t
        };

        self.wnd_data_buf
            .resize((roi_width * roi_height) as usize, 0);
        let mut src;
        unsafe {
            src = img
                .data()
                .as_ptr()
                .offset((roi.y() * img_width + roi.x()) as isize);
        }
        let mut dest = self.wnd_data_buf.as_mut_ptr();
        let len = roi_width as usize;
        let len2 = (roi_width - pad_left - pad_right) as usize;

        if pad_top > 0 {
            unsafe {
                ptr::write_bytes(dest, 0, len * pad_top as usize);
                dest = dest.offset((roi_width * pad_top) as isize);
            }
        }

        match (pad_left, pad_right) {
            (0, 0) => {
                for _y in pad_top..(roi_height - pad_bottom) {
                    unsafe {
                        ptr::copy_nonoverlapping(src, dest, len);
                        src = src.offset(img_width as isize);
                        dest = dest.offset(roi_width as isize);
                    }
                }
            }
            (0, _) => {
                for _y in pad_top..(roi_height - pad_bottom) {
                    unsafe {
                        ptr::copy_nonoverlapping(src, dest, len2);
                        src = src.offset(img_width as isize);
                        dest = dest.offset(roi_width as isize);
                        ptr::write_bytes(dest.offset(-pad_right as isize), 0, pad_right as usize);
                    }
                }
            }
            (_, 0) => {
                for _y in pad_top..(roi_height - pad_bottom) {
                    unsafe {
                        ptr::write_bytes(dest, 0, pad_left as usize);
                        ptr::copy_nonoverlapping(src, dest.offset(pad_left as isize), len2);
                        src = src.offset(img_width as isize);
                        dest = dest.offset(roi_width as isize);
                    }
                }
            }
            (_, _) => {
                for _y in pad_top..(roi_height - pad_bottom) {
                    unsafe {
                        ptr::write_bytes(dest, 0, pad_left as usize);
                        ptr::copy_nonoverlapping(src, dest.offset(pad_left as isize), len2);
                        src = src.offset(img_width as isize);
                        dest = dest.offset(roi_width as isize);
                        ptr::write_bytes(dest.offset(-pad_right as isize), 0, pad_right as usize);
                    }
                }
            }
        }

        if pad_bottom > 0 {
            unsafe {
                ptr::write_bytes(dest, 0, len * pad_bottom as usize);
            }
        }

        let src_img = ImageData::new(&self.wnd_data_buf, roi.width(), roi.height());
        resize_image(&src_img, &mut self.wnd_data, self.wnd_size, self.wnd_size);
    }

    fn detect_impl(&mut self, image: &mut ImagePyramid) -> Vec<FaceInfo> {
        let first_hierarchy_size = self.model.get_hierarchy_size(0) as usize;
        let mut proposals = vec![Vec::new(); first_hierarchy_size];
        let mut proposals_nms = vec![Vec::new(); first_hierarchy_size];

        while let Some((image_scaled, scale_factor)) = image.get_next_scale_image() {
            Self::feature_map_for_classifier(
                &self.model.get_classifiers()[0],
                &mut self.feature_maps,
            )
            .compute(&image_scaled);

            let step_x = self.slide_wnd_step_x;
            let step_y = self.slide_wnd_step_y;
            let max_x = image_scaled.width() - self.wnd_size;
            let max_y = image_scaled.height() - self.wnd_size;

            for y in Seq::new(0, move |n| n + step_y).take_while(move |n| *n <= max_y) {
                for x in Seq::new(0, move |n| n + step_x).take_while(move |n| *n <= max_x) {
                    let rect = Rectangle::new(x as i32, y as i32, self.wnd_size, self.wnd_size);
                    Self::feature_map_for_classifier(
                        &self.model.get_classifiers()[0],
                        &mut self.feature_maps,
                    );

                    for (classifier, proposal) in self
                        .model
                        .get_classifiers()
                        .iter()
                        .zip(proposals.iter_mut())
                        .take(first_hierarchy_size)
                    {
                        let score = Self::classify_with_classifier(
                            classifier,
                            None,
                            &mut self.feature_maps,
                            rect,
                        );
                        if score.is_positive() {
                            let mut wnd_info = FaceInfo::new();
                            let bbox = wnd_info.bbox_mut();
                            bbox.set_x((x as f32 / scale_factor + 0.5) as i32);
                            bbox.set_y((y as f32 / scale_factor + 0.5) as i32);
                            let width = (self.wnd_size as f32 / scale_factor + 0.5) as u32;
                            bbox.set_width(width);
                            bbox.set_height(width);
                            wnd_info.set_score(f64::from(score.score()));
                            proposal.push(wnd_info);
                        }
                    }
                }
            }
        }

        for i in 0..first_hierarchy_size {
            non_maximum_suppression(&mut proposals[i], &mut proposals_nms[i], 0.8);
            proposals[i].clear();
        }

        let image1x = image.get_image_1x();
        let mut mlp_predicts: Vec<f32> = vec![0.0; 4];

        let mut cls_idx = first_hierarchy_size;
        let mut model_idx = first_hierarchy_size;
        let mut buf_idx: Vec<i32> = Vec::new();

        for i in 1..self.model.get_hierarchy_count() {
            let hierarchy_size_i = self.model.get_hierarchy_size(i) as usize;
            if buf_idx.len() < hierarchy_size_i {
                buf_idx.resize(hierarchy_size_i, 0);
            }

            for r in buf_idx.iter_mut().take(hierarchy_size_i as usize) {
                {
                    let wnd_src = self.model.get_wnd_src(cls_idx);
                    *r = wnd_src[0];
                    let num_wnd_src = wnd_src.len();
                    let r = *r as usize;
                    proposals[r].clear();

                    for k in wnd_src.iter().take(num_wnd_src) {
                        for item in &proposals_nms[*k as usize] {
                            let last_index = proposals[r].len();
                            proposals[r].insert(last_index, item.clone());
                        }
                    }
                }
                let r = *r as usize;

                let k_max = self.model.get_num_stage(cls_idx);
                for k in 0..k_max {
                    let mut bbox_id = 0;
                    {
                        let num_wnd = proposals[r].len();
                        let bboxes = &mut proposals[r];

                        for m in 0..num_wnd {
                            if bboxes[m].bbox().x() + bboxes[m].bbox().width() as i32 <= 0
                                || bboxes[m].bbox().y() + bboxes[m].bbox().height() as i32 <= 0
                            {
                                continue;
                            }

                            self.get_window_data(&image1x, bboxes[m].bbox_mut());
                            let img_temp =
                                ImageData::new(&self.wnd_data, self.wnd_size, self.wnd_size);
                            let classifier = &self.model.get_classifiers()[model_idx];
                            Self::feature_map_for_classifier(classifier, &mut self.feature_maps)
                                .compute(&img_temp);
                            let rect = Rectangle::new(0, 0, self.wnd_size, self.wnd_size);

                            let new_score = Self::classify_with_classifier(
                                classifier,
                                Some(&mut mlp_predicts),
                                &mut self.feature_maps,
                                rect,
                            );
                            if new_score.is_positive() {
                                let x = bboxes[m].bbox().x() as f32;
                                let y = bboxes[m].bbox().y() as f32;
                                let w = bboxes[m].bbox().width() as f32;
                                let h = bboxes[m].bbox().height() as f32;

                                let bbox_w = ((mlp_predicts[3] * 2.0 - 1.0) * w + w + 0.5).floor();
                                bboxes[bbox_id].bbox_mut().set_width(bbox_w as u32);
                                bboxes[bbox_id].bbox_mut().set_height(bbox_w as u32);

                                bboxes[bbox_id].bbox_mut().set_x(
                                    ((mlp_predicts[1] * 2.0 - 1.0) * w
                                        + x
                                        + (w - bbox_w) * 0.5
                                        + 0.5)
                                        .floor() as i32,
                                );

                                bboxes[bbox_id].bbox_mut().set_y(
                                    ((mlp_predicts[2] * 2.0 - 1.0) * h
                                        + y
                                        + (h - bbox_w) * 0.5
                                        + 0.5)
                                        .floor() as i32,
                                );

                                bboxes[bbox_id].set_score(f64::from(new_score.score()));

                                bbox_id += 1;
                            }
                        }
                    }

                    proposals[r].truncate(bbox_id);

                    if k < (k_max - 1) {
                        non_maximum_suppression(&mut proposals[r], &mut proposals_nms[r], 0.8);
                        proposals[r] = proposals_nms[r].clone();
                    } else if i == (self.model.get_hierarchy_count() - 1) {
                        non_maximum_suppression(&mut proposals[r], &mut proposals_nms[r], 0.3);
                        proposals[r] = proposals_nms[r].clone();
                    }

                    model_idx += 1;
                }

                cls_idx += 1;
            }

            for j in 0..hierarchy_size_i {
                proposals_nms[j] = proposals[buf_idx[j] as usize].clone();
            }
        }

        proposals_nms[0].clone()
    }
}

fn non_maximum_suppression(
    bboxes: &mut Vec<FaceInfo>,
    bboxes_nms: &mut Vec<FaceInfo>,
    iou_thresh: f32,
) {
    bboxes_nms.clear();
    bboxes.sort_by(|x, y| {
        let x_score = x.score();
        let y_score = y.score();
        if x_score > y_score {
            // x goes before y
            Less
        } else if x_score < y_score {
            Greater
        } else {
            Equal
        }
    });

    let mut select_idx = 0;
    let mut mask_merged = vec![false; bboxes.len()];

    loop {
        while select_idx < bboxes.len() && mask_merged[select_idx] {
            select_idx += 1;
        }

        if select_idx == bboxes.len() {
            break;
        }

        bboxes_nms.push(bboxes[select_idx].clone());
        mask_merged[select_idx] = true;

        let mut score;
        {
            score = bboxes_nms.last().unwrap().score();
        }

        let area1;
        let x1;
        let y1;
        let x2;
        let y2;
        {
            area1 = (bboxes[select_idx].bbox().width() * bboxes[select_idx].bbox().height()) as f32;
            x1 = bboxes[select_idx].bbox().x();
            y1 = bboxes[select_idx].bbox().y();
            x2 = bboxes[select_idx].bbox().x() + bboxes[select_idx].bbox().width() as i32 - 1;
            y2 = bboxes[select_idx].bbox().y() + bboxes[select_idx].bbox().height() as i32 - 1;
        }

        select_idx += 1;

        for i in select_idx..bboxes.len() {
            if mask_merged[i] {
                continue;
            }

            let x = cmp::max(x1, bboxes[i].bbox().x());
            let y = cmp::max(y1, bboxes[i].bbox().y());
            let w = cmp::min(
                x2,
                bboxes[i].bbox().x() + bboxes[i].bbox().width() as i32 - 1,
            ) - x
                + 1;
            let h = cmp::min(
                y2,
                bboxes[i].bbox().y() + bboxes[i].bbox().height() as i32 - 1,
            ) - y
                + 1;

            if w <= 0 || h <= 0 {
                continue;
            }

            let area2 = (bboxes[i].bbox().width() * bboxes[i].bbox().height()) as f32;
            let area_intersect = (w * h) as f32;
            let area_union = area1 + area2 - area_intersect;
            if area_intersect / area_union > iou_thresh {
                mask_merged[i] = true;
                let bbox_i_score = bboxes[i].score();
                score += bbox_i_score;
            }
        }

        bboxes_nms.last_mut().unwrap().set_score(score);
    }
}