1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
//! The Shuffler
//!
//! This module contains the `Shuffler` transformer. `Shuffler` implements the
//! `Transformer` trait and is used to shuffle the rows of an input matrix.
//! You can control the random number generator used by the `Shuffler`.
//!
//! # Examples
//!
//! ```
//! use rusty_machine::linalg::Matrix;
//! use rusty_machine::data::transforms::Transformer;
//! use rusty_machine::data::transforms::shuffle::Shuffler;
//!
//! // Create an input matrix that we want to shuffle
//! let mat = Matrix::new(3, 2, vec![1.0, 2.0,
//! 3.0, 4.0,
//! 5.0, 6.0]);
//!
//! // Create a new shuffler
//! let mut shuffler = Shuffler::default();
//! let shuffled_mat = shuffler.transform(mat).unwrap();
//!
//! println!("{}", shuffled_mat);
//! ```
use learning::LearningResult;
use linalg::{Matrix, BaseMatrix, BaseMatrixMut};
use super::Transformer;
use rand::{Rng, thread_rng, rngs::ThreadRng};
/// The `Shuffler`
///
/// Provides an implementation of `Transformer` which shuffles
/// the input rows in place.
#[derive(Debug)]
pub struct Shuffler<R: Rng> {
rng: R,
}
impl<R: Rng> Shuffler<R> {
/// Construct a new `Shuffler` with given random number generator.
///
/// # Examples
///
/// ```
/// # extern crate rand;
/// # extern crate rusty_machine;
///
/// use rusty_machine::data::transforms::Transformer;
/// use rusty_machine::data::transforms::shuffle::Shuffler;
/// use rand::{StdRng, SeedableRng};
///
/// # fn main() {
/// // We can create a seeded rng
/// let rng = StdRng::from_seed(&[1, 2, 3]);
///
/// let shuffler = Shuffler::new(rng);
/// # }
/// ```
pub fn new(rng: R) -> Self {
Shuffler { rng: rng }
}
}
/// Create a new shuffler using the `rand::thread_rng` function
/// to provide a randomly seeded random number generator.
impl Default for Shuffler<ThreadRng> {
fn default() -> Self {
Shuffler { rng: thread_rng() }
}
}
/// The `Shuffler` will transform the input `Matrix` by shuffling
/// its rows in place.
///
/// Under the hood this uses a Fisher-Yates shuffle.
impl<R: Rng, T> Transformer<Matrix<T>> for Shuffler<R> {
fn transform(&mut self, mut inputs: Matrix<T>) -> LearningResult<Matrix<T>> {
let n = inputs.rows();
for i in 0..n {
// Swap i with a random point after it
let j = self.rng.gen_range(0..n - i);
inputs.swap_rows(i, i + j);
}
Ok(inputs)
}
}
#[cfg(test)]
mod tests {
use linalg::Matrix;
use super::super::Transformer;
use super::Shuffler;
use rand::{StdRng, SeedableRng};
#[test]
fn seeded_shuffle() {
let rng = StdRng::from_seed(&[1, 2, 3]);
let mut shuffler = Shuffler::new(rng);
let mat = Matrix::new(4, 2, vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]);
let shuffled = shuffler.transform(mat).unwrap();
assert_eq!(shuffled.into_vec(),
vec![3.0, 4.0, 1.0, 2.0, 7.0, 8.0, 5.0, 6.0]);
}
#[test]
fn shuffle_single_row() {
let mut shuffler = Shuffler::default();
let mat = Matrix::new(1, 8, vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]);
let shuffled = shuffler.transform(mat).unwrap();
assert_eq!(shuffled.into_vec(),
vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]);
}
}