1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
use num_iter::range_step;
use std::iter::repeat;
#[inline(always)]
pub(crate) fn expand_packed<F>(buf: &mut [u8], channels: usize, bit_depth: u8, mut func: F)
where
F: FnMut(u8, &mut [u8]),
{
let pixels = buf.len() / channels * bit_depth as usize;
let extra = pixels % 8;
let entries = pixels / 8 + match extra {
0 => 0,
_ => 1,
};
let mask = ((1u16 << bit_depth) - 1) as u8;
let i = (0..entries)
.rev() .flat_map(|idx|
range_step(0, 8, bit_depth)
.zip(repeat(idx))
)
.skip(extra);
let channels = channels as isize;
let j = range_step(buf.len() as isize - channels, -channels, -channels);
for ((shift, i), j) in i.zip(j) {
let pixel = (buf[i] & (mask << shift)) >> shift;
func(pixel, &mut buf[j as usize..(j + channels) as usize])
}
}
#[allow(dead_code)]
pub(crate) fn expand_bits(bit_depth: u8, row_size: u32, buf: &[u8]) -> Vec<u8> {
let mask = (1u8 << bit_depth as usize) - 1;
let scaling_factor = 255 / ((1 << bit_depth as usize) - 1);
let bit_width = row_size * u32::from(bit_depth);
let skip = if bit_width % 8 == 0 {
0
} else {
(8 - bit_width % 8) / u32::from(bit_depth)
};
let row_len = row_size + skip;
let mut p = Vec::new();
let mut i = 0;
for v in buf {
for shift in num_iter::range_step_inclusive(8i8-(bit_depth as i8), 0, -(bit_depth as i8)) {
if i % (row_len as usize) < (row_size as usize) {
let pixel = (v & mask << shift as usize) >> shift as usize;
p.push(pixel * scaling_factor);
}
i += 1;
}
}
p
}
#[allow(dead_code)]
pub(crate) fn check_dimension_overflow(width: u32, height: u32, bytes_per_pixel: u8) -> bool {
width as u64 * height as u64 > std::u64::MAX / bytes_per_pixel as u64
}
#[allow(dead_code)]
pub(crate) fn vec_u16_into_u8(vec: Vec<u16>) -> Vec<u8> {
vec_copy_to_u8(&vec)
}
#[allow(dead_code)]
pub(crate) fn vec_u32_into_u8(vec: Vec<u32>) -> Vec<u8> {
vec_copy_to_u8(&vec)
}
#[allow(dead_code)]
pub(crate) fn vec_u64_into_u8(vec: Vec<u64>) -> Vec<u8> {
vec_copy_to_u8(&vec)
}
#[allow(dead_code)]
pub(crate) fn vec_copy_to_u8<T>(vec: &[T]) -> Vec<u8>
where
T: bytemuck::Pod,
{
bytemuck::cast_slice(vec).to_owned()
}
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct NonExhaustiveMarker {
pub(crate) _private: Empty,
}
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub(crate) enum Empty { }
#[inline]
pub(crate) fn clamp<N>(a: N, min: N, max: N) -> N
where
N: PartialOrd,
{
if a < min {
min
} else if a > max {
max
} else {
a
}
}
#[cfg(test)]
mod test {
#[test]
fn gray_to_luma8_skip() {
let check = |bit_depth, w, from, to| {
assert_eq!(
super::expand_bits(bit_depth, w, from),
to);
};
check(
1, 10,
&[0b11110000, 0b11000000, 0b00001111, 0b11000000],
vec![255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255]);
check(
2, 5,
&[0b11110000, 0b11000000, 0b00001111, 0b11000000],
vec![255, 255, 0, 0, 255, 0, 0, 255, 255, 255]);
check(
2, 4,
&[0b11110000, 0b00001111],
vec![255, 255, 0, 0, 0, 0, 255, 255]);
check(
4, 1,
&[0b11110011, 0b00001100],
vec![255, 0]);
}
}