1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// This file is part of the open-source port of SeetaFace engine, which originally includes three modules:
//      SeetaFace Detection, SeetaFace Alignment, and SeetaFace Identification.
//
// This file is part of the SeetaFace Detection module, containing codes implementing the face detection method described in the following paper:
//
//      Funnel-structured cascade for multi-view face detection with alignment awareness,
//      Shuzhe Wu, Meina Kan, Zhenliang He, Shiguang Shan, Xilin Chen.
//      In Neurocomputing (under review)
//
// Copyright (C) 2016, Visual Information Processing and Learning (VIPL) group,
// Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
//
// As an open-source face recognition engine: you can redistribute SeetaFace source codes
// and/or modify it under the terms of the BSD 2-Clause License.
//
// You should have received a copy of the BSD 2-Clause License along with the software.
// If not, see < https://opensource.org/licenses/BSD-2-Clause>.

use std::io;

use crate::classifier::{Classifier, ClassifierKind, LabBoostedClassifier, SurfMlpClassifier};
use byteorder::{LittleEndian, ReadBytesExt};

#[derive(Clone)]
pub struct Model {
    classifiers: Vec<Classifier>,
    wnd_src_id: Vec<Vec<i32>>,
    hierarchy_sizes: Vec<i32>,
    num_stages: Vec<i32>,
}

impl Model {
    #[inline]
    pub fn get_classifiers(&self) -> &[Classifier] {
        &self.classifiers
    }

    #[inline]
    pub fn get_wnd_src(&self, id: usize) -> &Vec<i32> {
        &self.wnd_src_id[id]
    }

    #[inline]
    pub fn get_hierarchy_count(&self) -> usize {
        self.hierarchy_sizes.len()
    }

    #[inline]
    pub fn get_num_stage(&self, id: usize) -> i32 {
        self.num_stages[id]
    }

    #[inline]
    pub fn get_hierarchy_size(&self, hierarchy_index: usize) -> i32 {
        self.hierarchy_sizes[hierarchy_index]
    }
}

/// Load model from any stream or buffer
#[inline]
pub fn read_model<R: io::Read>(buf: R) -> Result<Model, io::Error> {
    ModelReader::new(buf).read()
}

struct ModelReader<R: io::Read> {
    reader: R,
}

impl<R: io::Read> ModelReader<R> {
    #[inline]
    fn new(reader: R) -> Self {
        ModelReader { reader }
    }

    pub fn read(mut self) -> Result<Model, io::Error> {
        let num_hierarchy = self.read_i32()? as usize;
        let mut classifiers = Vec::new();
        let mut hierarchy_sizes = Vec::with_capacity(num_hierarchy);
        let mut num_stages = Vec::new();
        let mut wnd_src_id = Vec::new();

        for _ in 0..num_hierarchy {
            let hierarchy_size = self.read_i32()?;
            hierarchy_sizes.push(hierarchy_size);

            for _ in 0..hierarchy_size {
                let num_stage = self.read_i32()?;
                num_stages.push(num_stage);

                for _ in 0..num_stage {
                    let classifier_kind_id = self.read_i32()?;
                    let classifier_kind = ClassifierKind::from(classifier_kind_id);

                    match classifier_kind {
                        Some(ref classifier_kind) => {
                            classifiers.push(self.create_classifier(classifier_kind)?);
                        }
                        None => panic!("Unexpected classifier kind id: {}", classifier_kind_id),
                    };
                }

                let num_wnd_src = self.read_i32()?;
                let mut num_wnd_vec;
                if num_wnd_src > 0 {
                    num_wnd_vec = Vec::with_capacity(num_wnd_src as usize);
                    for _ in 0..num_wnd_src {
                        num_wnd_vec.push(self.read_i32()?);
                    }
                } else {
                    num_wnd_vec = Vec::new();
                }
                wnd_src_id.push(num_wnd_vec);
            }
        }

        Ok(Model {
            classifiers,
            wnd_src_id,
            hierarchy_sizes,
            num_stages,
        })
    }

    fn create_classifier(
        &mut self,
        classifier_kind: &ClassifierKind,
    ) -> Result<Classifier, io::Error> {
        match *classifier_kind {
            ClassifierKind::LabBoosted => {
                let mut classifier = LabBoostedClassifier::new();
                self.read_lab_boosted_model(&mut classifier)?;
                Ok(Classifier::LabBoosted(classifier))
            }
            ClassifierKind::SurfMlp => {
                let mut classifier = SurfMlpClassifier::new();
                self.read_surf_mlp_model(&mut classifier)?;
                Ok(Classifier::SurfMlp(classifier))
            }
        }
    }

    fn read_lab_boosted_model(
        &mut self,
        classifier: &mut LabBoostedClassifier,
    ) -> Result<(), io::Error> {
        let num_base_classifier = self.read_i32()?;
        let num_bin = self.read_i32()?;

        for _ in 0..num_base_classifier {
            let x = self.read_i32()?;
            let y = self.read_i32()?;
            classifier.add_feature(x, y);
        }

        let mut thresh: Vec<f32> = Vec::with_capacity(num_base_classifier as usize);
        for _ in 0..num_base_classifier {
            thresh.push(self.read_f32()?);
        }

        for i in 0..num_base_classifier {
            let mut weights: Vec<f32> = Vec::with_capacity(num_bin as usize + 1);
            for _ in 0..weights.capacity() {
                weights.push(self.read_f32()?);
            }
            classifier.add_base_classifier(weights, thresh[i as usize]);
        }

        Ok(())
    }

    fn read_surf_mlp_model(&mut self, classifier: &mut SurfMlpClassifier) -> Result<(), io::Error> {
        let num_layer = self.read_i32()?;
        let num_feat = self.read_i32()?;

        for _ in 0..num_feat {
            classifier.add_feature_id(self.read_i32()?);
        }

        classifier.set_threshold(self.read_f32()?);

        let mut input_dim = self.read_i32()?;
        for i in 1..num_layer {
            let output_dim = self.read_i32()?;

            let weights_count = input_dim * output_dim;
            let mut weights: Vec<f32> = Vec::with_capacity(weights_count as usize);
            for _ in 0..weights_count {
                weights.push(self.read_f32()?);
            }

            let mut biases: Vec<f32> = Vec::with_capacity(output_dim as usize);
            for _ in 0..output_dim {
                biases.push(self.read_f32()?);
            }

            if i == num_layer - 1 {
                classifier.add_output_layer(
                    input_dim as usize,
                    output_dim as usize,
                    weights,
                    biases,
                );
            } else {
                classifier.add_layer(input_dim as usize, output_dim as usize, weights, biases);
            }

            input_dim = output_dim;
        }

        Ok(())
    }

    #[inline]
    fn read_i32(&mut self) -> Result<i32, io::Error> {
        self.reader.read_i32::<LittleEndian>()
    }

    #[inline]
    fn read_f32(&mut self) -> Result<f32, io::Error> {
        self.reader.read_f32::<LittleEndian>()
    }
}