1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// This file is part of the open-source port of SeetaFace engine, which originally includes three modules:
//      SeetaFace Detection, SeetaFace Alignment, and SeetaFace Identification.
//
// This file is part of the SeetaFace Detection module, containing codes implementing the face detection method described in the following paper:
//
//      Funnel-structured cascade for multi-view face detection with alignment awareness,
//      Shuzhe Wu, Meina Kan, Zhenliang He, Shiguang Shan, Xilin Chen.
//      In Neurocomputing (under review)
//
// Copyright (C) 2016, Visual Information Processing and Learning (VIPL) group,
// Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
//
// As an open-source face recognition engine: you can redistribute SeetaFace source codes
// and/or modify it under the terms of the BSD 2-Clause License.
//
// You should have received a copy of the BSD 2-Clause License along with the software.
// If not, see < https://opensource.org/licenses/BSD-2-Clause>.

use super::Score;
use crate::feat::SurfMlpFeatureMap;
use crate::math;
use crate::Rectangle;
use std::mem;

#[cfg(feature = "rayon")]
use rayon::prelude::*;

struct TwoWayBuffer {
    input: Vec<f32>,
    output: Vec<f32>,
}

impl TwoWayBuffer {
    #[inline]
    fn new() -> Self {
        TwoWayBuffer {
            input: Vec::new(),
            output: Vec::new(),
        }
    }

    #[inline]
    fn get_buffers(&mut self) -> (&mut Vec<f32>, &mut Vec<f32>) {
        (&mut self.input, &mut self.output)
    }

    #[inline]
    fn get_input(&mut self) -> &mut Vec<f32> {
        &mut self.input
    }

    #[inline]
    fn swap(&mut self) {
        mem::swap(&mut self.input, &mut self.output);
    }
}

pub struct SurfMlpBuffers {
    input: Vec<f32>,
    output: Vec<f32>,
    layers: TwoWayBuffer,
}

impl SurfMlpBuffers {
    #[inline]
    pub fn new() -> Self {
        SurfMlpBuffers {
            input: Vec::new(),
            output: Vec::new(),
            layers: TwoWayBuffer::new(),
        }
    }
}

#[derive(Clone)]
pub struct SurfMlpClassifier {
    feature_ids: Vec<i32>,
    thresh: f32,
    layers: Vec<Layer>,
}

impl SurfMlpClassifier {
    #[inline]
    pub fn new() -> Self {
        SurfMlpClassifier {
            feature_ids: Vec::new(),
            thresh: 0.0,
            layers: Vec::new(),
        }
    }

    #[inline]
    pub fn add_feature_id(&mut self, feature_id: i32) {
        self.feature_ids.push(feature_id);
    }

    #[inline]
    pub fn set_threshold(&mut self, thresh: f32) {
        self.thresh = thresh;
    }

    pub fn add_layer(
        &mut self,
        input_dim: usize,
        output_dim: usize,
        weights: Vec<f32>,
        biases: Vec<f32>,
    ) {
        self.layers.push(Layer {
            input_dim,
            output_dim,
            weights,
            biases,
            act_func: Self::relu,
        })
    }

    pub fn add_output_layer(
        &mut self,
        input_dim: usize,
        output_dim: usize,
        weights: Vec<f32>,
        biases: Vec<f32>,
    ) {
        self.layers.push(Layer {
            input_dim,
            output_dim,
            weights,
            biases,
            act_func: Self::sigmoid,
        })
    }

    #[inline]
    fn relu(x: f32) -> f32 {
        if x > 0.0 {
            x
        } else {
            0.0
        }
    }

    #[inline]
    fn sigmoid(x: f32) -> f32 {
        1.0 / (1.0 + (-x).exp())
    }

    fn compute_internal(&self, bufs: &mut SurfMlpBuffers) {
        bufs.layers
            .get_input()
            .resize(self.layers[0].output_size(), 0.0);
        self.layers[0].compute(&bufs.input, bufs.layers.get_input());

        for i in 1..(self.layers.len() - 1) {
            {
                let layer = &self.layers[i];
                let (input_buf, output_buf) = bufs.layers.get_buffers();
                output_buf.resize(layer.output_size(), 0.0);
                layer.compute(input_buf, output_buf);
            }
            bufs.layers.swap();
        }

        let last_layer = &self.layers[self.layers.len() - 1];
        last_layer.compute(bufs.layers.get_input(), &mut bufs.output);
    }
}

#[derive(Clone)]
struct Layer {
    input_dim: usize,
    output_dim: usize,
    weights: Vec<f32>,
    biases: Vec<f32>,
    act_func: fn(f32) -> f32,
}

impl Layer {
    fn compute(&self, input: &[f32], output: &mut [f32]) {
        #[cfg(feature = "rayon")]
        let it = self.weights.par_chunks(self.input_dim);

        #[cfg(not(feature = "rayon"))]
        let it = self.weights.chunks(self.input_dim);

        it.zip(&self.biases)
            .zip(output)
            .for_each(|((weights, bias), output)| {
                let x = math::vector_inner_product(input, weights) + bias;
                *output = (self.act_func)(x);
            });
    }

    #[inline]
    fn input_size(&self) -> usize {
        self.input_dim
    }

    #[inline]
    fn output_size(&self) -> usize {
        self.output_dim
    }
}

impl SurfMlpClassifier {
    pub fn classify(
        &self,
        output: Option<&mut Vec<f32>>,
        bufs: &mut SurfMlpBuffers,
        feature_map: &mut SurfMlpFeatureMap,
        roi: Rectangle,
    ) -> Score {
        let input_layer = self.layers.get(0).expect("No layers");
        bufs.input.resize(input_layer.input_size(), 0.0);

        let num_layers = self.layers.len();
        let output_layer = self.layers.get(num_layers - 1).expect("No layers");
        bufs.output.resize(output_layer.output_size(), 0.0);

        {
            let mut dest = bufs.input.as_mut_ptr();
            unsafe {
                for &feature_id in &self.feature_ids[..] {
                    feature_map.get_feature_vector((feature_id - 1) as usize, dest, roi);
                    let offset = feature_map.get_feature_vector_dim(feature_id as usize);
                    dest = dest.offset(offset as isize);
                }
            }
        }

        self.compute_internal(bufs);

        let score = *bufs.output.get(0).expect("No score");
        let score = Score {
            positive: score > self.thresh,
            score,
        };

        if let Some(output) = output {
            output.clear();
            output.extend_from_slice(&bufs.output);
        }

        score
    }
}