1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
use std::format;
use std::io::{self, BufRead, BufReader, Write};
use std::convert::TryFrom;
use teaclave_types::{FunctionArguments, FunctionRuntime};
use gbdt::config::Config;
use gbdt::decision_tree::Data;
use gbdt::gradient_boost::GBDT;
const IN_DATA: &str = "training_data";
const OUT_MODEL: &str = "trained_model";
#[derive(Default)]
pub struct GbdtTrain;
#[derive(serde::Deserialize)]
struct GbdtTrainArguments {
feature_size: usize,
max_depth: u32,
iterations: usize,
shrinkage: f32,
feature_sample_ratio: f64,
data_sample_ratio: f64,
min_leaf_size: usize,
loss: String,
training_optimization_level: u8,
}
impl TryFrom<FunctionArguments> for GbdtTrainArguments {
type Error = anyhow::Error;
fn try_from(arguments: FunctionArguments) -> Result<Self, Self::Error> {
use anyhow::Context;
serde_json::from_str(&arguments.into_string()).context("Cannot deserialize arguments")
}
}
impl GbdtTrain {
pub const NAME: &'static str = "builtin-gbdt-train";
pub fn new() -> Self {
Default::default()
}
pub fn run(
&self,
arguments: FunctionArguments,
runtime: FunctionRuntime,
) -> anyhow::Result<String> {
log::debug!("start traning...");
let args = GbdtTrainArguments::try_from(arguments)?;
log::debug!("open input...");
let training_file = runtime.open_input(IN_DATA)?;
let mut train_dv = parse_training_data(training_file, args.feature_size)?;
let data_size = train_dv.len();
let mut cfg = Config::new();
cfg.set_debug(false);
cfg.set_feature_size(args.feature_size);
cfg.set_max_depth(args.max_depth);
cfg.set_iterations(args.iterations);
cfg.set_shrinkage(args.shrinkage);
cfg.set_loss(&args.loss);
cfg.set_min_leaf_size(args.min_leaf_size);
cfg.set_data_sample_ratio(args.data_sample_ratio);
cfg.set_feature_sample_ratio(args.feature_sample_ratio);
cfg.set_training_optimization_level(args.training_optimization_level);
let mut gbdt_train_mod = GBDT::new(&cfg);
gbdt_train_mod.fit(&mut train_dv);
let model_json = serde_json::to_string(&gbdt_train_mod)?;
let mut model_file = runtime.create_output(OUT_MODEL)?;
model_file.write_all(model_json.as_bytes())?;
let summary = format!("Trained {} lines of data.", data_size);
Ok(summary)
}
}
fn parse_data_line(line: &str, feature_size: usize) -> anyhow::Result<Data> {
let trimed_line = line.trim();
anyhow::ensure!(!trimed_line.is_empty(), "Empty line");
let mut v: Vec<f32> = trimed_line
.split(',')
.map(|x| x.parse::<f32>())
.collect::<std::result::Result<_, _>>()?;
anyhow::ensure!(
v.len() == feature_size + 1,
"Data format error: column len = {}, expected = {}",
v.len(),
feature_size + 1
);
Ok(Data {
label: v.swap_remove(feature_size),
feature: v,
target: 0.0,
weight: 1.0,
residual: 0.0,
initial_guess: 0.0,
})
}
fn parse_training_data(input: impl io::Read, feature_size: usize) -> anyhow::Result<Vec<Data>> {
let mut samples: Vec<Data> = Vec::new();
let reader = BufReader::new(input);
for line_result in reader.lines() {
let line = line_result?;
let data = parse_data_line(&line, feature_size)?;
samples.push(data);
}
Ok(samples)
}
#[cfg(feature = "enclave_unit_test")]
pub mod tests {
use super::*;
use serde_json::json;
use std::untrusted::fs;
use teaclave_crypto::*;
use teaclave_runtime::*;
use teaclave_test_utils::*;
use teaclave_types::*;
pub fn run_tests() -> bool {
run_tests!(test_gbdt_train, test_gbdt_parse_training_data,)
}
fn test_gbdt_train() {
let arguments = FunctionArguments::from_json(json!({
"feature_size": 4,
"max_depth": 4,
"iterations": 100,
"shrinkage": 0.1,
"feature_sample_ratio": 1.0,
"data_sample_ratio": 1.0,
"min_leaf_size": 1,
"loss": "LAD",
"training_optimization_level": 2
}))
.unwrap();
let plain_input = "fixtures/functions/gbdt_training/train.txt";
let plain_output = "fixtures/functions/gbdt_training/training_model.txt.out";
let expected_output = "fixtures/functions/gbdt_training/expected_model.txt";
let input_files = StagedFiles::new(hashmap!(
IN_DATA =>
StagedFileInfo::new(plain_input, TeaclaveFile128Key::random(), FileAuthTag::mock())
));
let output_files = StagedFiles::new(hashmap!(
OUT_MODEL =>
StagedFileInfo::new(plain_output, TeaclaveFile128Key::random(), FileAuthTag::mock())
));
let runtime = Box::new(RawIoRuntime::new(input_files, output_files));
let summary = GbdtTrain::new().run(arguments, runtime).unwrap();
assert_eq!(summary, "Trained 120 lines of data.");
let result = fs::read_to_string(plain_output).unwrap();
let expected = fs::read_to_string(expected_output).unwrap();
assert_eq!(&result[..], &expected[..]);
}
fn test_gbdt_parse_training_data() {
let line = "4.8,3.0,1.4,0.3,3.0";
let result = parse_data_line(line, 4);
assert!(result.is_ok());
let result = parse_data_line(line, 3);
assert!(result.is_err());
}
}