1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
//! Gaussian Mixture Models
//!
//! Provides implementation of GMMs using the EM algorithm.
//!
//! # Usage
//!
//! ```
//! use rusty_machine::linalg::Matrix;
//! use rusty_machine::learning::gmm::{CovOption, GaussianMixtureModel};
//! use rusty_machine::learning::UnSupModel;
//!
//! let inputs = Matrix::new(4, 2, vec![1.0, 2.0, -3.0, -3.0, 0.1, 1.5, -5.0, -2.5]);
//! let test_inputs = Matrix::new(3, 2, vec![1.0, 2.0, 3.0, 2.9, -4.4, -2.5]);
//!
//! // Create gmm with k(=2) classes.
//! let mut model = GaussianMixtureModel::new(2);
//! model.set_max_iters(10);
//! model.cov_option = CovOption::Diagonal;
//!
//! // Where inputs is a Matrix with features in columns.
//! model.train(&inputs).unwrap();
//!
//! // Print the means and covariances of the GMM
//! println!("{:?}", model.means());
//! println!("{:?}", model.covariances());
//!
//! // Where test_inputs is a Matrix with features in columns.
//! let post_probs = model.predict(&test_inputs).unwrap();
//!
//! // Probabilities that each point comes from each Gaussian.
//! println!("{:?}", post_probs.data());
//! ```
use linalg::{Matrix, MatrixSlice, Vector, BaseMatrix, BaseMatrixMut, Axes};
use rulinalg::utils;
use rulinalg::matrix::decomposition::{PartialPivLu};

use learning::{LearningResult, UnSupModel};
use learning::toolkit::rand_utils;
use learning::error::{Error, ErrorKind};

/// Covariance options for GMMs.
///
/// - Full : The full covariance structure.
/// - Regularized : Adds a regularization constant to the covariance diagonal.
/// - Diagonal : Only the diagonal covariance structure.
#[derive(Clone, Copy, Debug)]
pub enum CovOption {
    /// The full covariance structure.
    Full,
    /// Adds a regularization constant to the covariance diagonal.
    Regularized(f64),
    /// Only the diagonal covariance structure.
    Diagonal,
}


/// A Gaussian Mixture Model
#[derive(Debug)]
pub struct GaussianMixtureModel {
    comp_count: usize,
    mix_weights: Vector<f64>,
    model_means: Option<Matrix<f64>>,
    model_covars: Option<Vec<Matrix<f64>>>,
    log_lik: f64,
    max_iters: usize,
    /// The covariance options for the GMM.
    pub cov_option: CovOption,
}

impl UnSupModel<Matrix<f64>, Matrix<f64>> for GaussianMixtureModel {
    /// Train the model using inputs.
    fn train(&mut self, inputs: &Matrix<f64>) -> LearningResult<()> {
        let reg_value = if inputs.rows() > 1 {
            1f64 / (inputs.rows() - 1) as f64
        } else {
            return Err(Error::new(ErrorKind::InvalidData, "Only one row of data provided."));
        };

        // Initialization:
        let k = self.comp_count;

        self.model_covars = {
            let cov_mat = self.initialize_covariances(inputs, reg_value)?;
            Some(vec![cov_mat; k])
        };

        let random_rows: Vec<usize> =
            rand_utils::reservoir_sample(&(0..inputs.rows()).collect::<Vec<usize>>(), k);
        self.model_means = Some(inputs.select_rows(&random_rows));

        for _ in 0..self.max_iters {
            let log_lik_0 = self.log_lik;

            let (weights, log_lik_1) = self.membership_weights(inputs)?;

            if (log_lik_1 - log_lik_0).abs() < 1e-15 {
                break;
            }

            self.log_lik = log_lik_1;

            self.update_params(inputs, weights);
        }

        Ok(())
    }

    /// Predict output from inputs.
    fn predict(&self, inputs: &Matrix<f64>) -> LearningResult<Matrix<f64>> {
        if let (&Some(_), &Some(_)) = (&self.model_means, &self.model_covars) {
            Ok(self.membership_weights(inputs)?.0)
        } else {
            Err(Error::new_untrained())
        }

    }
}

impl GaussianMixtureModel {
    /// Constructs a new Gaussian Mixture Model
    ///
    /// Defaults to 100 maximum iterations and
    /// full covariance structure.
    ///
    /// # Examples
    /// ```
    /// use rusty_machine::learning::gmm::GaussianMixtureModel;
    ///
    /// let gmm = GaussianMixtureModel::new(3);
    /// ```
    pub fn new(k: usize) -> GaussianMixtureModel {
        GaussianMixtureModel {
            comp_count: k,
            mix_weights: Vector::ones(k) / (k as f64),
            model_means: None,
            model_covars: None,
            log_lik: 0f64,
            max_iters: 100,
            cov_option: CovOption::Full,
        }
    }

    /// Constructs a new GMM with the specified prior mixture weights.
    ///
    /// The mixture weights must have the same length as the number of components.
    /// Each element of the mixture weights must be non-negative.
    ///
    /// # Examples
    ///
    /// ```
    /// use rusty_machine::learning::gmm::GaussianMixtureModel;
    /// use rusty_machine::linalg::Vector;
    ///
    /// let mix_weights = Vector::new(vec![0.25, 0.25, 0.5]);
    ///
    /// let gmm = GaussianMixtureModel::with_weights(3, mix_weights).unwrap();
    /// ```
    ///
    /// # Failures
    ///
    /// Fails if either of the following conditions are met:
    ///
    /// - Mixture weights do not have length k.
    /// - Mixture weights have a negative entry.
    pub fn with_weights(k: usize, mixture_weights: Vector<f64>) -> LearningResult<GaussianMixtureModel> {
        if mixture_weights.size() != k {
            Err(Error::new(ErrorKind::InvalidParameters, "Mixture weights must have length k."))
        } else if mixture_weights.data().iter().any(|&x| x < 0f64) {
            Err(Error::new(ErrorKind::InvalidParameters, "Mixture weights must have only non-negative entries."))
        } else {
            let sum = mixture_weights.sum();
            let normalized_weights = mixture_weights / sum;

            Ok(GaussianMixtureModel {
                comp_count: k,
                mix_weights: normalized_weights,
                model_means: None,
                model_covars: None,
                log_lik: 0f64,
                max_iters: 100,
                cov_option: CovOption::Full,
            })
        }
    }

    /// The model means
    ///
    /// Returns an Option<&Matrix<f64>> containing
    /// the model means. Each row represents
    /// the mean of one of the Gaussians.
    pub fn means(&self) -> Option<&Matrix<f64>> {
        self.model_means.as_ref()
    }

    /// The model covariances
    ///
    /// Returns an Option<&Vec<Matrix<f64>>> containing
    /// the model covariances. Each Matrix in the vector
    /// is the covariance of one of the Gaussians.
    pub fn covariances(&self) -> Option<&Vec<Matrix<f64>>> {
        self.model_covars.as_ref()
    }

    /// The model mixture weights
    ///
    /// Returns a reference to the model mixture weights.
    /// These are the weighted contributions of each underlying
    /// Gaussian to the model distribution.
    pub fn mixture_weights(&self) -> &Vector<f64> {
        &self.mix_weights
    }

    /// Sets the max number of iterations for the EM algorithm.
    ///
    /// # Examples
    ///
    /// ```
    /// use rusty_machine::learning::gmm::GaussianMixtureModel;
    ///
    /// let mut gmm = GaussianMixtureModel::new(2);
    /// gmm.set_max_iters(5);
    /// ```
    pub fn set_max_iters(&mut self, iters: usize) {
        self.max_iters = iters;
    }

    fn initialize_covariances(&self, inputs: &Matrix<f64>, reg_value: f64) -> LearningResult<Matrix<f64>> {
        match self.cov_option {
            CovOption::Diagonal => {
                let variance = inputs.variance(Axes::Row)?;
                Ok(Matrix::from_diag(variance.data()) * reg_value.sqrt())
            }

            CovOption::Full | CovOption::Regularized(_) => {
                let means = inputs.mean(Axes::Row);
                let mut cov_mat = Matrix::zeros(inputs.cols(), inputs.cols());
                for (j, mut row) in cov_mat.row_iter_mut().enumerate() {
                    for (k, elem) in row.iter_mut().enumerate() {
                        *elem = inputs.row_iter().map(|r| {
                            (r[j] - means[j]) * (r[k] - means[k])
                        }).sum::<f64>();
                    }
                }
                cov_mat *= reg_value;
                if let CovOption::Regularized(eps) = self.cov_option {
                    cov_mat += Matrix::<f64>::identity(cov_mat.cols()) * eps;
                }
                Ok(cov_mat)
            }
        }
    }

    fn membership_weights(&self, inputs: &Matrix<f64>) -> LearningResult<(Matrix<f64>, f64)> {
        let n = inputs.rows();

        let mut member_weights_data = Vec::with_capacity(n * self.comp_count);

        // We compute the determinants and inverses now
        let mut cov_sqrt_dets = Vec::with_capacity(self.comp_count);
        let mut cov_invs = Vec::with_capacity(self.comp_count);

        if let Some(ref covars) = self.model_covars {
            for cov in covars {
                let lup = PartialPivLu::decompose(cov.clone()).expect("Covariance could not be lup decomposed");
                let covar_det = lup.det();
                // TODO: We can probably remove this inverse for a more stable solve elsewhere.
                let covar_inv = lup.inverse().map_err(Error::from)?;

                cov_sqrt_dets.push(covar_det.sqrt());
                cov_invs.push(covar_inv);
            }
        }

        let mut log_lik = 0f64;

        // Now we compute the membership weights
        if let Some(ref means) = self.model_means {
            for i in 0..n {
                let mut pdfs = Vec::with_capacity(self.comp_count);
                let x_i = MatrixSlice::from_matrix(inputs, [i, 0], 1, inputs.cols());

                for j in 0..self.comp_count {
                    let mu_j = MatrixSlice::from_matrix(means, [j, 0], 1, means.cols());
                    let diff = x_i - mu_j;

                    let pdf = (&diff * &cov_invs[j] * diff.transpose() * -0.5).into_vec()[0]
                        .exp() / cov_sqrt_dets[j];
                    pdfs.push(pdf);
                }

                let weighted_pdf_sum = utils::dot(&pdfs, self.mix_weights.data());

                for (idx, pdf) in pdfs.iter().enumerate() {
                    member_weights_data.push(self.mix_weights[idx] * pdf / (weighted_pdf_sum));
                }

                log_lik += weighted_pdf_sum.ln();
            }
        }

        Ok((Matrix::new(n, self.comp_count, member_weights_data), log_lik))
    }

    fn update_params(&mut self, inputs: &Matrix<f64>, membership_weights: Matrix<f64>) {
        let n = membership_weights.rows();
        let d = inputs.cols();

        let sum_weights = membership_weights.sum_rows();

        self.mix_weights = &sum_weights / (n as f64);

        let mut new_means = membership_weights.transpose() * inputs;

        for (mut mean, w) in new_means.row_iter_mut().zip(sum_weights.data().iter()) {
            *mean /= *w;
        }

        let mut new_covs = Vec::with_capacity(self.comp_count);

        for k in 0..self.comp_count {
            let mut cov_mat = Matrix::zeros(d, d);
            let new_means_k = MatrixSlice::from_matrix(&new_means, [k, 0], 1, d);

            for i in 0..n {
                let inputs_i = MatrixSlice::from_matrix(inputs, [i, 0], 1, d);
                let diff = inputs_i - new_means_k;
                cov_mat += self.compute_cov(diff, membership_weights[[i, k]]);
            }

            if let CovOption::Regularized(eps) = self.cov_option {
                cov_mat += Matrix::<f64>::identity(cov_mat.cols()) * eps;
            }

            new_covs.push(cov_mat / sum_weights[k]);

        }

        self.model_means = Some(new_means);
        self.model_covars = Some(new_covs);
    }

    fn compute_cov(&self, diff: Matrix<f64>, weight: f64) -> Matrix<f64> {
        match self.cov_option {
            CovOption::Full | CovOption::Regularized(_) => (diff.transpose() * diff) * weight,
            CovOption::Diagonal => Matrix::from_diag(&diff.elemul(&diff).into_vec()) * weight,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::GaussianMixtureModel;
    use linalg::Vector;

    #[test]
    fn test_means_none() {
        let model = GaussianMixtureModel::new(5);

        assert_eq!(model.means(), None);
    }

    #[test]
    fn test_covars_none() {
        let model = GaussianMixtureModel::new(5);

        assert_eq!(model.covariances(), None);
    }

    #[test]
    fn test_negative_mixtures() {
        let mix_weights = Vector::new(vec![-0.25, 0.75, 0.5]);
        let gmm_res = GaussianMixtureModel::with_weights(3, mix_weights);
        assert!(gmm_res.is_err());
    }

    #[test]
    fn test_wrong_length_mixtures() {
        let mix_weights = Vector::new(vec![0.1, 0.25, 0.75, 0.5]);
        let gmm_res = GaussianMixtureModel::with_weights(3, mix_weights);
        assert!(gmm_res.is_err());
    }
}