1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
//! Linear algebra utils module.
//!
//! Contains support methods for linear algebra structs.

use std::cmp;
use libnum::Zero;
use std::ops::{Add, Mul, Sub, Div};

/// Compute dot product of two slices.
///
/// # Examples
///
/// ```
/// use rulinalg::utils;
/// let a = vec![1.0, 2.0, 3.0, 4.0];
/// let b = vec![1.0, 2.0, 3.0, 4.0];
///
/// let c = utils::dot(&a,&b);
/// ```
pub fn dot<T: Copy + Zero + Add<T, Output = T> + Mul<T, Output = T>>(u: &[T], v: &[T]) -> T {
    let len = cmp::min(u.len(), v.len());
    let mut xs = &u[..len];
    let mut ys = &v[..len];

    let mut s = T::zero();
    let (mut p0, mut p1, mut p2, mut p3, mut p4, mut p5, mut p6, mut p7) =
        (T::zero(), T::zero(), T::zero(), T::zero(), T::zero(), T::zero(), T::zero(), T::zero());

    while xs.len() >= 8 {
        p0 = p0 + xs[0] * ys[0];
        p1 = p1 + xs[1] * ys[1];
        p2 = p2 + xs[2] * ys[2];
        p3 = p3 + xs[3] * ys[3];
        p4 = p4 + xs[4] * ys[4];
        p5 = p5 + xs[5] * ys[5];
        p6 = p6 + xs[6] * ys[6];
        p7 = p7 + xs[7] * ys[7];

        xs = &xs[8..];
        ys = &ys[8..];
    }
    s = s + p0 + p4;
    s = s + p1 + p5;
    s = s + p2 + p6;
    s = s + p3 + p7;

    for i in 0..xs.len() {
        s = s + xs[i] * ys[i];
    }
    s
}

/// Unrolled sum
///
/// Computes the sum over the slice consuming it in the process.
///
/// Given graciously by bluss from ndarray!
pub fn unrolled_sum<T>(mut xs: &[T]) -> T
    where T: Clone + Add<Output = T> + Zero
{
    // eightfold unrolled so that floating point can be vectorized
    // (even with strict floating point accuracy semantics)
    let mut sum = T::zero();
    let (mut p0, mut p1, mut p2, mut p3, mut p4, mut p5, mut p6, mut p7) =
        (T::zero(), T::zero(), T::zero(), T::zero(), T::zero(), T::zero(), T::zero(), T::zero());
    while xs.len() >= 8 {
        p0 = p0 + xs[0].clone();
        p1 = p1 + xs[1].clone();
        p2 = p2 + xs[2].clone();
        p3 = p3 + xs[3].clone();
        p4 = p4 + xs[4].clone();
        p5 = p5 + xs[5].clone();
        p6 = p6 + xs[6].clone();
        p7 = p7 + xs[7].clone();

        xs = &xs[8..];
    }
    sum = sum.clone() + (p0 + p4);
    sum = sum.clone() + (p1 + p5);
    sum = sum.clone() + (p2 + p6);
    sum = sum.clone() + (p3 + p7);
    for elt in xs {
        sum = sum.clone() + elt.clone();
    }
    sum
}

/// Vectorized binary operation applied to two slices.
/// The first argument should be a mutable slice which will
/// be modified in place to prevent new memory allocation.
///
/// # Examples
///
/// ```
/// use rulinalg::utils;
///
/// let mut a = vec![2.0; 10];
/// let b = vec![3.0; 10];
///
/// utils::in_place_vec_bin_op(&mut a, &b, |x, &y| { *x = 1f64 + *x * y });
///
/// // Will print a vector of `7`s.
/// println!("{:?}", a);
/// ```
pub fn in_place_vec_bin_op<F, T>(mut u: &mut [T], v: &[T], mut f: F)
    where F: FnMut(&mut T, &T),
          T: Copy
{
    debug_assert_eq!(u.len(), v.len());
    let len = cmp::min(u.len(), v.len());

    let ys = &v[..len];
    let xs = &mut u[..len];

    for i in 0..len {
        f(&mut xs[i], &ys[i])
    }
}

/// Vectorized binary operation applied to two slices.
///
/// # Examples
///
/// ```
/// use rulinalg::utils;
///
/// let mut a = vec![2.0; 10];
/// let b = vec![3.0; 10];
///
/// let c = utils::vec_bin_op(&a, &b, |x, y| { 1f64 + x * y });
///
/// // Will print a vector of `7`s.
/// println!("{:?}", a);
/// ```
pub fn vec_bin_op<F, T>(u: &[T], v: &[T], f: F) -> Vec<T>
    where F: Fn(T, T) -> T,
          T: Copy
{
    debug_assert_eq!(u.len(), v.len());
    let len = cmp::min(u.len(), v.len());

    let xs = &u[..len];
    let ys = &v[..len];

    let mut out_vec = Vec::with_capacity(len);
    unsafe {
        out_vec.set_len(len);
    }

    {
        let out_slice = &mut out_vec[..len];

        for i in 0..len {
            out_slice[i] = f(xs[i], ys[i]);
        }
    }

    out_vec
}

/// Compute vector sum of two slices.
///
/// # Examples
///
/// ```
/// use rulinalg::utils;
/// let a = vec![1.0, 2.0, 3.0, 4.0];
/// let b = vec![1.0, 2.0, 3.0, 4.0];
///
/// let c = utils::vec_sum(&a,&b);
///
/// assert_eq!(c, vec![2.0, 4.0, 6.0, 8.0]);
/// ```
pub fn vec_sum<T: Copy + Add<T, Output = T>>(u: &[T], v: &[T]) -> Vec<T> {
    vec_bin_op(u, v, |x, y| x + y)
}


/// Compute vector difference two slices.
///
/// # Examples
///
/// ```
/// use rulinalg::utils;
/// let a = vec![1.0, 2.0, 3.0, 4.0];
/// let b = vec![1.0, 2.0, 3.0, 4.0];
///
/// let c = utils::vec_sub(&a,&b);
///
/// assert_eq!(c, vec![0.0; 4]);
/// ```
pub fn vec_sub<T: Copy + Sub<T, Output = T>>(u: &[T], v: &[T]) -> Vec<T> {
    vec_bin_op(u, v, |x, y| x - y)
}

/// Computes elementwise multiplication.
///
/// # Examples
///
/// ```
/// use rulinalg::utils;
/// let a = vec![1.0, 2.0, 3.0, 4.0];
/// let b = vec![1.0, 2.0, 3.0, 4.0];
///
/// let c = utils::ele_mul(&a,&b);
///
/// assert_eq!(c, vec![1.0, 4.0, 9.0, 16.0]);
/// ```
pub fn ele_mul<T: Copy + Mul<T, Output = T>>(u: &[T], v: &[T]) -> Vec<T> {
    vec_bin_op(u, v, |x, y| x * y)
}

/// Computes elementwise division.
///
/// # Examples
///
/// ```
/// use rulinalg::utils;
/// let a = vec![1.0, 2.0, 3.0, 4.0];
/// let b = vec![1.0, 2.0, 3.0, 4.0];
///
/// let c = utils::ele_div(&a,&b);
///
/// assert_eq!(c, vec![1.0; 4]);
/// ```
pub fn ele_div<T: Copy + Div<T, Output = T>>(u: &[T], v: &[T]) -> Vec<T> {
    vec_bin_op(u, v, |x, y| x / y)
}


/// Find argmax of slice.
///
/// Returns index of first occuring maximum.
///
/// # Examples
///
/// ```
/// use rulinalg::utils;
/// let a = vec![1.0, 2.0, 3.0, 4.0];
///
/// let c = utils::argmax(&a);
/// assert_eq!(c.0, 3);
/// assert_eq!(c.1, 4.0);
/// ```
pub fn argmax<T>(u: &[T]) -> (usize, T)
    where T: Copy + PartialOrd
{
    assert!(u.len() != 0);

    let mut max_index = 0;
    let mut max = u[max_index];

    for (i, v) in u.iter().enumerate().skip(1) {
        if max < *v {
            max_index = i;
            max = *v;
        }
    }

    (max_index, max)
}

/// Find argmin of slice.
///
/// Returns index of first occuring minimum.
///
/// # Examples
///
/// ```
/// use rulinalg::utils;
/// let a = vec![5.0, 2.0, 3.0, 4.0];
///
/// let c = utils::argmin(&a);
/// assert_eq!(c.0, 1);
/// assert_eq!(c.1, 2.0);
/// ```
pub fn argmin<T>(u: &[T]) -> (usize, T)
    where T: Copy + PartialOrd
{
    assert!(u.len() != 0);

    let mut min_index = 0;
    let mut min = u[min_index];

    for (i, v) in u.iter().enumerate().skip(1) {
        if min > *v {
            min_index = i;
            min = *v;
        }
    }

    (min_index, min)
}

/// Find index of value in slice.
///
/// Returns index of first occuring value.
///
/// # Examples
///
/// ```
/// use rulinalg::utils;
/// let a = vec![1.0, 2.0, 3.0, 4.0];
///
/// let c = utils::find(&a, 3.0);
/// assert_eq!(c, 2);
/// ```
pub fn find<T>(p: &[T], u: T) -> usize
    where T: PartialOrd
{
    for (i, v) in p.iter().enumerate() {
        if *v == u {
            return i;
        }
    }

    panic!("Value not found.")
}