1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
// Copyright © 2014, Simonas Kazlauskas <rdrand@kazlauskas.me>
//
// Permission to use, copy, modify, and/or distribute this software for any purpose with or without
// fee is hereby granted, provided that the above copyright notice and this permission notice
// appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
// SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
// AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
// NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
// OF THIS SOFTWARE.
//! An implementation of random number generators based on `rdrand` and `rdseed` instructions.
//!
//! The random number generators provided by this crate are fairly slow (the latency for these
//! instructions is pretty high), but provide high quality random bits. Caveat is: neither AMD’s
//! nor Intel’s designs are public and therefore are not verifiable for lack of backdoors.
//!
//! Unless you know what you are doing, use the random number generators provided by the `rand`
//! crate (such as `OsRng`) instead.
//!
//! Here are a measurements for select processor architectures. Check [Agner’s instruction tables]
//! for up-to-date listings.
//!
//! <table>
//! <tr>
//! <th>Architecture</th>
//! <th colspan="3">Latency (cycles)</th>
//! <th>Maximum throughput (per core)</th>
//! </tr>
//! <tr>
//! <td></td>
//! <td>u16</td>
//! <td>u32</td>
//! <td>u64</td>
//! <td></td>
//! </tr>
//! <tr>
//! <td>AMD Ryzen</td>
//! <td>~1200</td>
//! <td>~1200</td>
//! <td>~2500</td>
//! <td>~12MB/s @ 3.7GHz</td>
//! </tr>
//! <tr>
//! <td>Intel Skylake</td>
//! <td>460</td>
//! <td>460</td>
//! <td>460</td>
//! <td>~72MB/s @ 4.2GHz</td>
//! </tr>
//! <tr>
//! <td>Intel Haswell</td>
//! <td>320</td>
//! <td>320</td>
//! <td>320</td>
//! <td>~110MB/s @ 4.4GHz</td>
//! </tr>
//! </table>
//!
//! [Agner’s instruction tables]: http://agner.org/optimize/
#![cfg_attr(not(feature = "std"), no_std)]
pub mod changelog;
mod errors;
pub use errors::ErrorCode;
use rand_core::{CryptoRng, Error, RngCore};
#[cold]
#[inline(never)]
pub(crate) fn busy_loop_fail(code: ErrorCode) -> ! {
panic!("{}", code);
}
/// A cryptographically secure statistically uniform, non-periodic and non-deterministic random bit
/// generator.
///
/// Note that this generator may be implemented using a deterministic algorithm that is reseeded
/// routinely from a non-deterministic entropy source to achieve the desirable properties.
///
/// This generator is a viable replacement to any generator, however, since nobody has audited
/// this hardware implementation yet, the usual disclaimers as to their suitability apply.
///
/// It is potentially faster than `OsRng`, but is only supported by more recent architectures such
/// as Intel Ivy Bridge and AMD Zen.
#[derive(Clone, Copy)]
pub struct RdRand(());
/// A cryptographically secure non-deterministic random bit generator.
///
/// This generator produces high-entropy output and is suited to seed other pseudo-random
/// generators.
///
/// This instruction is only supported by recent architectures such as Intel Broadwell and AMD Zen.
///
/// This generator is not intended for general random number generation purposes and should be used
/// to seed other generators implementing [rand_core::SeedableRng].
#[derive(Clone, Copy)]
pub struct RdSeed(());
impl CryptoRng for RdRand {}
impl CryptoRng for RdSeed {}
mod arch {
#[cfg(target_arch = "x86")]
pub use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
pub use core::arch::x86_64::*;
#[cfg(target_arch = "x86")]
pub(crate) unsafe fn _rdrand64_step(dest: &mut u64) -> i32 {
let mut ret1: u32 = 0;
let mut ret2: u32 = 0;
let ok = _rdrand32_step(&mut ret1) & _rdrand32_step(&mut ret2);
*dest = (ret1 as u64) << 32 | (ret2 as u64);
ok
}
#[cfg(target_arch = "x86")]
pub(crate) unsafe fn _rdseed64_step(dest: &mut u64) -> i32 {
let mut ret1: u32 = 0;
let mut ret2: u32 = 0;
let ok = _rdseed32_step(&mut ret1) & _rdseed32_step(&mut ret2);
*dest = (ret1 as u64) << 32 | (ret2 as u64);
ok
}
}
// See the following documentation for usage (in particular wrt retries) recommendations:
//
// https://software.intel.com/content/www/us/en/develop/articles/intel-digital-random-number-generator-drng-software-implementation-guide.html
macro_rules! loop_rand {
("rdrand", $el: ty, $step: path) => {{
let mut idx = 0;
loop {
let mut el: $el = 0;
if $step(&mut el) != 0 {
break Ok(el);
} else if idx == 10 {
break Err(ErrorCode::HardwareFailure);
}
idx += 1;
}
}};
("rdseed", $el: ty, $step: path) => {{
let mut idx = 0;
loop {
let mut el: $el = 0;
if $step(&mut el) != 0 {
break Ok(el);
} else if idx == 127 {
break Err(ErrorCode::HardwareFailure);
}
idx += 1;
arch::_mm_pause();
}
}};
}
#[inline(always)]
fn authentic_amd() -> bool {
let cpuid0 = unsafe { arch::__cpuid(0) };
matches!(
(cpuid0.ebx, cpuid0.ecx, cpuid0.edx),
(0x68747541, 0x444D4163, 0x69746E65)
)
}
#[inline(always)]
fn amd_family(cpuid1: &arch::CpuidResult) -> u32 {
((cpuid1.eax >> 8) & 0xF) + ((cpuid1.eax >> 20) & 0xFF)
}
#[inline(always)]
fn has_rdrand(cpuid1: &arch::CpuidResult) -> bool {
const FLAG: u32 = 1 << 30;
cpuid1.ecx & FLAG == FLAG
}
#[inline(always)]
fn has_rdseed() -> bool {
const FLAG: u32 = 1 << 18;
unsafe { arch::__cpuid(7).ebx & FLAG == FLAG }
}
/// NB: On AMD processor families < 0x17, we want to unconditionally disable RDRAND
/// and RDSEED. Executing these instructions on these processors can return
/// non-random data (0) while also reporting a success.
///
/// See:
/// * https://github.com/systemd/systemd/issues/11810
/// * https://lore.kernel.org/all/776cb5c2d33e7fd0d2893904724c0e52b394f24a.1565817448.git.thomas.lendacky@amd.com/
///
/// We take extra care to do so even if `-Ctarget-features=+rdrand` have been
/// specified, in order to prevent users from shooting themselves in their feet.
const FIRST_GOOD_AMD_FAMILY: u32 = 0x17;
macro_rules! is_available {
("rdrand") => {{
if authentic_amd() {
let cpuid1 = unsafe { arch::__cpuid(1) };
has_rdrand(&cpuid1) && amd_family(&cpuid1) >= FIRST_GOOD_AMD_FAMILY
} else {
cfg!(target_feature = "rdrand") || has_rdrand(&unsafe { arch::__cpuid(1) })
}
}};
("rdseed") => {{
if authentic_amd() {
amd_family(&unsafe { arch::__cpuid(1) }) >= FIRST_GOOD_AMD_FAMILY && has_rdseed()
} else {
cfg!(target_feature = "rdrand") || has_rdseed()
}
}};
}
macro_rules! impl_rand {
($gen:ident, $feat:tt, $step16: path, $step32:path, $step64:path,
maxstep = $maxstep:path, maxty = $maxty: ty) => {
impl $gen {
/// Create a new instance of the random number generator.
///
/// This constructor checks whether the CPU the program is running on supports the
/// instruction necessary for this generator to operate. If the instruction is not
/// supported, an error is returned.
pub fn new() -> Result<Self, ErrorCode> {
if cfg!(target_env = "sgx") {
if cfg!(target_feature = $feat) {
Ok($gen(()))
} else {
Err(ErrorCode::UnsupportedInstruction)
}
} else if is_available!($feat) {
Ok($gen(()))
} else {
Err(ErrorCode::UnsupportedInstruction)
}
}
/// Generate a single random `u16` value.
///
/// The underlying instruction may fail for variety reasons (such as actual hardware
/// failure or exhausted entropy), however the exact reason for the failure is not
/// usually exposed.
///
/// This method will retry calling the instruction a few times, however if all the
/// attempts fail, it will return `None`.
///
/// In case `Err` is returned, the caller should assume that a non-recoverable failure
/// has occured and use another random number genrator instead.
#[inline(always)]
pub fn try_next_u16(&self) -> Result<u16, ErrorCode> {
#[target_feature(enable = $feat)]
unsafe fn imp() -> Result<u16, ErrorCode> {
loop_rand!($feat, u16, $step16)
}
unsafe { imp() }
}
/// Generate a single random `u32` value.
///
/// The underlying instruction may fail for variety reasons (such as actual hardware
/// failure or exhausted entropy), however the exact reason for the failure is not
/// usually exposed.
///
/// This method will retry calling the instruction a few times, however if all the
/// attempts fail, it will return `None`.
///
/// In case `Err` is returned, the caller should assume that a non-recoverable failure
/// has occured and use another random number genrator instead.
#[inline(always)]
pub fn try_next_u32(&self) -> Result<u32, ErrorCode> {
#[target_feature(enable = $feat)]
unsafe fn imp() -> Result<u32, ErrorCode> {
loop_rand!($feat, u32, $step32)
}
unsafe { imp() }
}
/// Generate a single random `u64` value.
///
/// The underlying instruction may fail for variety reasons (such as actual hardware
/// failure or exhausted entropy), however the exact reason for the failure is not
/// usually exposed.
///
/// This method will retry calling the instruction a few times, however if all the
/// attempts fail, it will return `None`.
///
/// In case `Err` is returned, the caller should assume that a non-recoverable failure
/// has occured and use another random number genrator instead.
///
/// Note, that on 32-bit targets, there’s no underlying instruction to generate a
/// 64-bit number, so it is emulated with the 32-bit version of the instruction.
#[inline(always)]
pub fn try_next_u64(&self) -> Result<u64, ErrorCode> {
#[target_feature(enable = $feat)]
unsafe fn imp() -> Result<u64, ErrorCode> {
loop_rand!($feat, u64, $step64)
}
unsafe { imp() }
}
/// Fill a buffer `dest` with random data.
///
/// This method will use the most appropriate variant of the instruction available on
/// the machine to achieve the greatest single-core throughput, however it has a
/// slightly higher setup cost than the plain `next_u32` or `next_u64` methods.
///
/// The underlying instruction may fail for variety reasons (such as actual hardware
/// failure or exhausted entropy), however the exact reason for the failure is not
/// usually exposed.
///
/// This method will retry calling the instruction a few times, however if all the
/// attempts fail, it will return an error.
///
/// If an error is returned, the caller should assume that an non-recoverable hardware
/// failure has occured and use another random number genrator instead.
#[inline(always)]
pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), ErrorCode> {
#[target_feature(enable = $feat)]
unsafe fn imp(dest: &mut [u8]) -> Result<(), ErrorCode> {
fn slow_fill_bytes<'a>(
mut left: &'a mut [u8],
mut right: &'a mut [u8],
) -> Result<(), ErrorCode> {
let mut word;
let mut buffer: &[u8] = &[];
loop {
if left.is_empty() {
if right.is_empty() {
break;
}
::core::mem::swap(&mut left, &mut right);
}
if buffer.is_empty() {
word =
unsafe { loop_rand!($feat, $maxty, $maxstep) }?.to_ne_bytes();
buffer = &word[..];
}
let len = left.len().min(buffer.len());
let (copy_src, leftover) = buffer.split_at(len);
let (copy_dest, dest_leftover) = { left }.split_at_mut(len);
buffer = leftover;
left = dest_leftover;
copy_dest.copy_from_slice(copy_src);
}
Ok(())
}
let destlen = dest.len();
if destlen > ::core::mem::size_of::<$maxty>() {
let (left, mid, right) = dest.align_to_mut();
for el in mid {
*el = loop_rand!($feat, $maxty, $maxstep)?;
}
slow_fill_bytes(left, right)
} else {
slow_fill_bytes(dest, &mut [])
}
}
unsafe { imp(dest) }
}
}
impl RngCore for $gen {
/// Generate a single random `u32` value.
///
/// The underlying instruction may fail for variety reasons (such as actual hardware
/// failure or exhausted entropy), however the exact reason for the failure is not
/// usually exposed.
///
/// # Panic
///
/// This method will retry calling the instruction a few times, however if all the
/// attempts fail, it will `panic`.
///
/// In case `panic` occurs, the caller should assume that an non-recoverable
/// hardware failure has occured and use another random number genrator instead.
#[inline(always)]
fn next_u32(&mut self) -> u32 {
match self.try_next_u32() {
Ok(result) => result,
Err(c) => busy_loop_fail(c),
}
}
/// Generate a single random `u64` value.
///
/// The underlying instruction may fail for variety reasons (such as actual hardware
/// failure or exhausted entropy), however the exact reason for the failure is not
/// usually exposed.
///
/// Note, that on 32-bit targets, there’s no underlying instruction to generate a
/// 64-bit number, so it is emulated with the 32-bit version of the instruction.
///
/// # Panic
///
/// This method will retry calling the instruction a few times, however if all the
/// attempts fail, it will `panic`.
///
/// In case `panic` occurs, the caller should assume that an non-recoverable
/// hardware failure has occured and use another random number genrator instead.
#[inline(always)]
fn next_u64(&mut self) -> u64 {
match self.try_next_u64() {
Ok(result) => result,
Err(c) => busy_loop_fail(c),
}
}
/// Fill a buffer `dest` with random data.
///
/// See `try_fill_bytes` for a more extensive documentation.
///
/// # Panic
///
/// This method will panic any time `try_fill_bytes` would return an error.
#[inline(always)]
fn fill_bytes(&mut self, dest: &mut [u8]) {
match self.try_fill_bytes(dest) {
Ok(result) => result,
Err(c) => busy_loop_fail(c),
}
}
/// Fill a buffer `dest` with random data.
///
/// This method will use the most appropriate variant of the instruction available on
/// the machine to achieve the greatest single-core throughput, however it has a
/// slightly higher setup cost than the plain `next_u32` or `next_u64` methods.
///
/// The underlying instruction may fail for variety reasons (such as actual hardware
/// failure or exhausted entropy), however the exact reason for the failure is not
/// usually exposed.
///
/// This method will retry calling the instruction a few times, however if all the
/// attempts fail, it will return an error.
///
/// If an error is returned, the caller should assume that an non-recoverable hardware
/// failure has occured and use another random number genrator instead.
#[inline(always)]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.try_fill_bytes(dest).map_err(Into::into)
}
}
};
}
#[cfg(target_arch = "x86_64")]
impl_rand!(
RdRand,
"rdrand",
arch::_rdrand16_step,
arch::_rdrand32_step,
arch::_rdrand64_step,
maxstep = arch::_rdrand64_step,
maxty = u64
);
#[cfg(target_arch = "x86_64")]
impl_rand!(
RdSeed,
"rdseed",
arch::_rdseed16_step,
arch::_rdseed32_step,
arch::_rdseed64_step,
maxstep = arch::_rdseed64_step,
maxty = u64
);
#[cfg(target_arch = "x86")]
impl_rand!(
RdRand,
"rdrand",
arch::_rdrand16_step,
arch::_rdrand32_step,
arch::_rdrand64_step,
maxstep = arch::_rdrand32_step,
maxty = u32
);
#[cfg(target_arch = "x86")]
impl_rand!(
RdSeed,
"rdseed",
arch::_rdseed16_step,
arch::_rdseed32_step,
arch::_rdseed64_step,
maxstep = arch::_rdseed32_step,
maxty = u32
);
#[cfg(test)]
mod test {
use super::{RdRand, RdSeed};
use rand_core::RngCore;
#[test]
fn rdrand_works() {
let _ = RdRand::new().map(|mut r| {
r.next_u32();
r.next_u64();
});
}
#[repr(C, align(8))]
struct FillBuffer([u8; 64]);
#[test]
fn fill_fills_all_bytes() {
let _ = RdRand::new().map(|mut r| {
let mut test_buffer;
let mut fill_buffer = FillBuffer([0; 64]); // make sure buffer is aligned to 8-bytes...
let test_cases = [
(0, 64), // well aligned
(8, 64), // well aligned
(0, 64), // well aligned
(5, 64), // left is non-empty, right is empty.
(0, 63), // left is empty, right is non-empty.
(5, 63), // left and right both are non-empty.
(5, 61), // left and right both are non-empty.
(0, 8), // 1 word-worth of data, aligned.
(1, 9), // 1 word-worth of data, misaligned.
(0, 7), // less than 1 word of data.
(1, 7), // less than 1 word of data.
];
'outer: for &(start, end) in &test_cases {
test_buffer = [0; 64];
for _ in 0..512 {
fill_buffer.0 = [0; 64];
r.fill_bytes(&mut fill_buffer.0[start..end]);
for (b, p) in test_buffer.iter_mut().zip(fill_buffer.0.iter()) {
*b = *b | *p;
}
if (&test_buffer[start..end]).iter().all(|x| *x != 0) {
assert!(
test_buffer[..start].iter().all(|x| *x == 0),
"all other values must be 0"
);
assert!(
test_buffer[end..].iter().all(|x| *x == 0),
"all other values must be 0"
);
continue 'outer;
}
}
panic!("wow, we broke it? {} {} {:?}", start, end, &test_buffer[..])
}
});
}
#[test]
fn rdseed_works() {
let _ = RdSeed::new().map(|mut r| {
r.next_u32();
r.next_u64();
});
}
}