[][src]Struct openssl::ec::EcGroup

pub struct EcGroup(_);

Describes the curve

A curve can be of the named curve type. These curves can be discovered using openssl binary openssl ecparam -list_curves. Other operations are available in the wiki. These named curves are available in the Nid module.

Curves can also be generated using prime field parameters or a binary field.

Prime fields use the formula y^2 mod p = x^3 + ax + b mod p. Binary fields use the formula y^2 + xy = x^3 + ax^2 + b. Named curves have assured security. To prevent accidental vulnerabilities, they should be prefered.

Methods

impl EcGroup[src]

pub fn from_curve_name(nid: Nid) -> Result<EcGroup, ErrorStack>[src]

Returns the group of a standard named curve.

OpenSSL documentation at EC_GROUP_new.

Methods from Deref<Target = EcGroupRef>

pub fn components_gfp(
    &self,
    p: &mut BigNumRef,
    a: &mut BigNumRef,
    b: &mut BigNumRef,
    ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]

Places the components of a curve over a prime field in the provided BigNums. The components make up the formula y^2 mod p = x^3 + ax + b mod p.

OpenSSL documentation available at EC_GROUP_get_curve_GFp

pub fn components_gf2m(
    &self,
    p: &mut BigNumRef,
    a: &mut BigNumRef,
    b: &mut BigNumRef,
    ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]

Places the components of a curve over a binary field in the provided BigNums. The components make up the formula y^2 + xy = x^3 + ax^2 + b.

In this form p relates to the irreducible polynomial. Each bit represents a term in the polynomial. It will be set to 3 1s or 5 1s depending on using a trinomial or pentanomial.

OpenSSL documentation at EC_GROUP_get_curve_GF2m.

pub fn cofactor(
    &self,
    cofactor: &mut BigNumRef,
    ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]

Places the cofactor of the group in the provided BigNum.

OpenSSL documentation at EC_GROUP_get_cofactor

pub fn degree(&self) -> u32[src]

Returns the degree of the curve.

OpenSSL documentation at EC_GROUP_get_degree

pub fn order_bits(&self) -> u32[src]

Returns the number of bits in the group order.

OpenSSL documentation at EC_GROUP_order_bits

pub fn generator(&self) -> &EcPointRef[src]

Returns the generator for the given curve as a EcPoint.

OpenSSL documentation at EC_GROUP_get0_generator

pub fn order(
    &self,
    order: &mut BigNumRef,
    ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]

Places the order of the curve in the provided BigNum.

OpenSSL documentation at EC_GROUP_get_order

pub fn set_asn1_flag(&mut self, flag: Asn1Flag)[src]

Sets the flag determining if the group corresponds to a named curve or must be explicitly parameterized.

This defaults to EXPLICIT_CURVE in OpenSSL 1.0.1 and 1.0.2, but NAMED_CURVE in OpenSSL 1.1.0.

pub fn curve_name(&self) -> Option<Nid>[src]

Returns the name of the curve, if a name is associated.

OpenSSL documentation at EC_GROUP_get_curve_name

Trait Implementations

impl AsRef<EcGroupRef> for EcGroup[src]

impl Borrow<EcGroupRef> for EcGroup[src]

impl Deref for EcGroup[src]

type Target = EcGroupRef

The resulting type after dereferencing.

impl DerefMut for EcGroup[src]

impl Drop for EcGroup[src]

impl ForeignType for EcGroup[src]

type CType = EC_GROUP

The raw C type.

type Ref = EcGroupRef

The type representing a reference to this type.

impl Send for EcGroup[src]

impl Sync for EcGroup[src]

Auto Trait Implementations

impl RefUnwindSafe for EcGroup

impl Unpin for EcGroup

impl UnwindSafe for EcGroup

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.