1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Comparing buffer contents in constant time.
//!
//! This crate provides constant time memory comparison functions. These functions
//! are useful in cyptographic functions, defending against timing based side
//! channel attacks
use crate::marker::BytewiseEquality;
use crate::types::{
AlignEc256PrivateKey, AlignEc256SharedKey, AlignKey128bit, AlignKey256bit, AlignMac128bit,
AlignMac256bit,
};
use core::mem;
use core::slice;
pub trait ConstTimeEq<T: BytewiseEquality + ?Sized = Self> {
fn ct_eq(&self, other: &T) -> bool;
fn ct_ne(&self, other: &T) -> bool {
!self.ct_eq(other)
}
}
impl<T> ConstTimeEq<[T]> for [T]
where
T: Eq + BytewiseEquality,
{
default fn ct_eq(&self, other: &[T]) -> bool {
if self.len() != other.len() {
return false;
}
if self.as_ptr() == other.as_ptr() {
return true;
}
let size = mem::size_of_val(self);
unsafe {
consttime_memequal(
self.as_ptr() as *const u8,
other.as_ptr() as *const u8,
size,
) != 0
}
}
}
impl<T> ConstTimeEq<T> for T
where
T: Eq + BytewiseEquality,
{
default fn ct_eq(&self, other: &T) -> bool {
let size = mem::size_of_val(self);
if size == 0 {
return true;
}
unsafe {
consttime_memequal(
self as *const T as *const u8,
other as *const T as *const u8,
size,
) != 0
}
}
}
impl ConstTimeEq<AlignKey128bit> for AlignKey128bit {
fn ct_eq(&self, other: &AlignKey128bit) -> bool {
self.key.ct_eq(&other.key)
}
}
impl ConstTimeEq<AlignKey256bit> for AlignKey256bit {
fn ct_eq(&self, other: &AlignKey256bit) -> bool {
self.key.ct_eq(&other.key)
}
}
impl ConstTimeEq<AlignMac128bit> for AlignMac128bit {
fn ct_eq(&self, other: &AlignMac128bit) -> bool {
self.mac.ct_eq(&other.mac)
}
}
impl ConstTimeEq<AlignMac256bit> for AlignMac256bit {
fn ct_eq(&self, other: &AlignMac256bit) -> bool {
self.mac.ct_eq(&other.mac)
}
}
impl ConstTimeEq<AlignEc256SharedKey> for AlignEc256SharedKey {
fn ct_eq(&self, other: &AlignEc256SharedKey) -> bool {
self.key.ct_eq(&other.key)
}
}
impl ConstTimeEq<AlignEc256PrivateKey> for AlignEc256PrivateKey {
fn ct_eq(&self, other: &AlignEc256PrivateKey) -> bool {
self.key.ct_eq(&other.key)
}
}
unsafe fn consttime_memequal(b1: *const u8, b2: *const u8, l: usize) -> i32 {
let mut res = 0_i32;
let mut len = l;
let p1 = slice::from_raw_parts(b1, l);
let p2 = slice::from_raw_parts(b2, l);
while len > 0 {
len -= 1;
res |= (p1[len] ^ p2[len]) as i32;
}
/*
* Map 0 to 1 and [1, 256) to 0 using only constant-time
* arithmetic.
*
* This is not simply `!res' because although many CPUs support
* branchless conditional moves and many compilers will take
* advantage of them, certain compilers generate branches on
* certain CPUs for `!res'.
*/
1 & ((res - 1) >> 8)
}