1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License..

use crate::memchr;
use core::cmp;
use core::fmt;
use core::ptr;
use core::mem;
use core::ops::{Deref, DerefMut};
use alloc_crate::slice;
use alloc_crate::vec::Vec;
use alloc_crate::str;
use alloc_crate::string::String;
use crate::sys;

pub use self::buffered::IntoInnerError;
pub use self::buffered::{BufReader, BufWriter, LineWriter};
pub use self::cursor::Cursor;
pub use self::error::{Error, ErrorKind, Result};
pub use self::lazy::{Lazy};
pub use sys::os::{errno, set_errno, error_string};
#[cfg(feature = "stdio")]
pub use self::stdio::{stderr, stdin, stdout, Stderr, Stdin, Stdout};
#[cfg(feature = "stdio")]
pub use self::stdio::{StderrLock, StdinLock, StdoutLock};
#[cfg(feature = "stdio")]
pub use self::stdio::{_eprint, _print};
pub use self::util::{copy, empty, repeat, sink, Empty, Repeat, Sink};

pub mod prelude;
mod buffered;
mod cursor;
mod error;
mod impls;
mod lazy;
#[cfg(feature = "stdio")]
mod stdio;
mod util;

const DEFAULT_BUF_SIZE: usize = crate::sys_common::io::DEFAULT_BUF_SIZE;

struct Guard<'a> {
    buf: &'a mut Vec<u8>,
    len: usize,
}

impl Drop for Guard<'_> {
    fn drop(&mut self) {
        unsafe {
            self.buf.set_len(self.len);
        }
    }
}

// A few methods below (read_to_string, read_line) will append data into a
// `String` buffer, but we need to be pretty careful when doing this. The
// implementation will just call `.as_mut_vec()` and then delegate to a
// byte-oriented reading method, but we must ensure that when returning we never
// leave `buf` in a state such that it contains invalid UTF-8 in its bounds.
//
// To this end, we use an RAII guard (to protect against panics) which updates
// the length of the string when it is dropped. This guard initially truncates
// the string to the prior length and only after we've validated that the
// new contents are valid UTF-8 do we allow it to set a longer length.
//
// The unsafety in this function is twofold:
//
// 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8
//    checks.
// 2. We're passing a raw buffer to the function `f`, and it is expected that
//    the function only *appends* bytes to the buffer. We'll get undefined
//    behavior if existing bytes are overwritten to have non-UTF-8 data.
fn append_to_string<F>(buf: &mut String, f: F) -> Result<usize>
where
    F: FnOnce(&mut Vec<u8>) -> Result<usize>,
{
    unsafe {
        let mut g = Guard { len: buf.len(), buf: buf.as_mut_vec() };
        let ret = f(g.buf);
        if str::from_utf8(&g.buf[g.len..]).is_err() {
            ret.and_then(|_| {
                Err(Error::new(ErrorKind::InvalidData, "stream did not contain valid UTF-8"))
            })
        } else {
            g.len = g.buf.len();
            ret
        }
    }
}

// This uses an adaptive system to extend the vector when it fills. We want to
// avoid paying to allocate and zero a huge chunk of memory if the reader only
// has 4 bytes while still making large reads if the reader does have a ton
// of data to return. Simply tacking on an extra DEFAULT_BUF_SIZE space every
// time is 4,500 times (!) slower than a default reservation size of 32 if the
// reader has a very small amount of data to return.
//
// Because we're extending the buffer with uninitialized data for trusted
// readers, we need to make sure to truncate that if any of this panics.
fn read_to_end<R: Read + ?Sized>(r: &mut R, buf: &mut Vec<u8>) -> Result<usize> {
    read_to_end_with_reservation(r, buf, |_| 32)
}

fn read_to_end_with_reservation<R, F>(
    r: &mut R,
    buf: &mut Vec<u8>,
    mut reservation_size: F,
) -> Result<usize>
where
    R: Read + ?Sized,
    F: FnMut(&R) -> usize,
{
    let start_len = buf.len();
    let mut g = Guard { len: buf.len(), buf };
    let ret;
    loop {
        if g.len == g.buf.len() {
            unsafe {
                // FIXME(danielhenrymantilla): #42788
                //
                //   - This creates a (mut) reference to a slice of
                //     _uninitialized_ integers, which is **undefined behavior**
                //
                //   - Only the standard library gets to soundly "ignore" this,
                //     based on its privileged knowledge of unstable rustc
                //     internals;
                g.buf.reserve(reservation_size(r));
                let capacity = g.buf.capacity();
                g.buf.set_len(capacity);
                r.initializer().initialize(&mut g.buf[g.len..]);
            }
        }

        match r.read(&mut g.buf[g.len..]) {
            Ok(0) => {
                ret = Ok(g.len - start_len);
                break;
            }
            Ok(n) => g.len += n,
            Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
            Err(e) => {
                ret = Err(e);
                break;
            }
        }
    }

    ret
}

pub(crate) fn default_read_vectored<F>(read: F, bufs: &mut [IoSliceMut<'_>]) -> Result<usize>
where
    F: FnOnce(&mut [u8]) -> Result<usize>,
{
    let buf = bufs.iter_mut().find(|b| !b.is_empty()).map_or(&mut [][..], |b| &mut **b);
    read(buf)
}

pub(crate) fn default_write_vectored<F>(write: F, bufs: &[IoSlice<'_>]) -> Result<usize>
where
    F: FnOnce(&[u8]) -> Result<usize>,
{
    let buf = bufs.iter().find(|b| !b.is_empty()).map_or(&[][..], |b| &**b);
    write(buf)
}

/// The `Read` trait allows for reading bytes from a source.
///
/// Implementors of the `Read` trait are called 'readers'.
///
/// Readers are defined by one required method, [`read()`]. Each call to [`read()`]
/// will attempt to pull bytes from this source into a provided buffer. A
/// number of other methods are implemented in terms of [`read()`], giving
/// implementors a number of ways to read bytes while only needing to implement
/// a single method.
///
/// Readers are intended to be composable with one another. Many implementors
/// throughout [`std::io`] take and provide types which implement the `Read`
/// trait.
///
/// Please note that each call to [`read()`] may involve a system call, and
/// therefore, using something that implements [`BufRead`], such as
/// [`BufReader`], will be more efficient.
///
pub trait Read {
    /// Pull some bytes from this source into the specified buffer, returning
    /// how many bytes were read.
    ///
    /// This function does not provide any guarantees about whether it blocks
    /// waiting for data, but if an object needs to block for a read and cannot,
    /// it will typically signal this via an [`Err`] return value.
    ///
    /// If the return value of this method is [`Ok(n)`], then it must be
    /// guaranteed that `0 <= n <= buf.len()`. A nonzero `n` value indicates
    /// that the buffer `buf` has been filled in with `n` bytes of data from this
    /// source. If `n` is `0`, then it can indicate one of two scenarios:
    ///
    /// 1. This reader has reached its "end of file" and will likely no longer
    ///    be able to produce bytes. Note that this does not mean that the
    ///    reader will *always* no longer be able to produce bytes.
    /// 2. The buffer specified was 0 bytes in length.
    ///
    /// No guarantees are provided about the contents of `buf` when this
    /// function is called, implementations cannot rely on any property of the
    /// contents of `buf` being true. It is recommended that *implementations*
    /// only write data to `buf` instead of reading its contents.
    ///
    /// Correspondingly, however, *callers* of this method may not assume any guarantees
    /// about how the implementation uses `buf`. The trait is safe to implement,
    /// so it is possible that the code that's supposed to write to the buffer might also read
    /// from it. It is your responsibility to make sure that `buf` is initialized
    /// before calling `read`. Calling `read` with an uninitialized `buf` (of the kind one
    /// obtains via [`MaybeUninit<T>`]) is not safe, and can lead to undefined behavior.
    ///
    /// [`MaybeUninit<T>`]: ../mem/union.MaybeUninit.html
    ///
    /// # Errors
    ///
    /// If this function encounters any form of I/O or other error, an error
    /// variant will be returned. If an error is returned then it must be
    /// guaranteed that no bytes were read.
    ///
    /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the read
    /// operation should be retried if there is nothing else to do.
    ///
    fn read(&mut self, buf: &mut [u8]) -> Result<usize>;

    /// Like `read`, except that it reads into a slice of buffers.
    ///
    /// Data is copied to fill each buffer in order, with the final buffer
    /// written to possibly being only partially filled. This method must behave
    /// as a single call to `read` with the buffers concatenated would.
    ///
    /// The default implementation calls `read` with either the first nonempty
    /// buffer provided, or an empty one if none exists.
    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
        default_read_vectored(|b| self.read(b), bufs)
    }

    /// Determines if this `Read`er can work with buffers of uninitialized
    /// memory.
    ///
    /// The default implementation returns an initializer which will zero
    /// buffers.
    ///
    /// If a `Read`er guarantees that it can work properly with uninitialized
    /// memory, it should call [`Initializer::nop()`]. See the documentation for
    /// [`Initializer`] for details.
    ///
    /// The behavior of this method must be independent of the state of the
    /// `Read`er - the method only takes `&self` so that it can be used through
    /// trait objects.
    ///
    /// # Safety
    ///
    /// This method is unsafe because a `Read`er could otherwise return a
    /// non-zeroing `Initializer` from another `Read` type without an `unsafe`
    /// block.
    ///
    /// [`Initializer::nop()`]: ../../std/io/struct.Initializer.html#method.nop
    /// [`Initializer`]: ../../std/io/struct.Initializer.html
    #[inline]
    unsafe fn initializer(&self) -> Initializer {
        Initializer::zeroing()
    }

    /// Read all bytes until EOF in this source, placing them into `buf`.
    ///
    /// All bytes read from this source will be appended to the specified buffer
    /// `buf`. This function will continuously call [`read()`] to append more data to
    /// `buf` until [`read()`] returns either [`Ok(0)`] or an error of
    /// non-[`ErrorKind::Interrupted`] kind.
    ///
    /// If successful, this function will return the total number of bytes read.
    ///
    /// # Errors
    ///
    /// If this function encounters an error of the kind
    /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
    /// will continue.
    ///
    /// If any other read error is encountered then this function immediately
    /// returns. Any bytes which have already been read will be appended to
    /// `buf`.
    ///
    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
        read_to_end(self, buf)
    }

    /// Read all bytes until EOF in this source, appending them to `buf`.
    ///
    /// If successful, this function returns the number of bytes which were read
    /// and appended to `buf`.
    ///
    /// # Errors
    ///
    /// If the data in this stream is *not* valid UTF-8 then an error is
    /// returned and `buf` is unchanged.
    ///
    /// See [`read_to_end`][readtoend] for other error semantics.
    ///
    /// [readtoend]: #method.read_to_end
    ///
    fn read_to_string(&mut self, buf: &mut String) -> Result<usize> {
        // Note that we do *not* call `.read_to_end()` here. We are passing
        // `&mut Vec<u8>` (the raw contents of `buf`) into the `read_to_end`
        // method to fill it up. An arbitrary implementation could overwrite the
        // entire contents of the vector, not just append to it (which is what
        // we are expecting).
        //
        // To prevent extraneously checking the UTF-8-ness of the entire buffer
        // we pass it to our hardcoded `read_to_end` implementation which we
        // know is guaranteed to only read data into the end of the buffer.
        append_to_string(buf, |b| read_to_end(self, b))
    }

    /// Read the exact number of bytes required to fill `buf`.
    ///
    /// This function reads as many bytes as necessary to completely fill the
    /// specified buffer `buf`.
    ///
    /// No guarantees are provided about the contents of `buf` when this
    /// function is called, implementations cannot rely on any property of the
    /// contents of `buf` being true. It is recommended that implementations
    /// only write data to `buf` instead of reading its contents.
    ///
    /// # Errors
    ///
    /// If this function encounters an error of the kind
    /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
    /// will continue.
    ///
    /// If this function encounters an "end of file" before completely filling
    /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
    /// The contents of `buf` are unspecified in this case.
    ///
    /// If any other read error is encountered then this function immediately
    /// returns. The contents of `buf` are unspecified in this case.
    ///
    /// If this function returns an error, it is unspecified how many bytes it
    /// has read, but it will never read more than would be necessary to
    /// completely fill the buffer.
    ///
    fn read_exact(&mut self, mut buf: &mut [u8]) -> Result<()> {
        while !buf.is_empty() {
            match self.read(buf) {
                Ok(0) => break,
                Ok(n) => {
                    let tmp = buf;
                    buf = &mut tmp[n..];
                }
                Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
                Err(e) => return Err(e),
            }
        }
        if !buf.is_empty() {
            Err(Error::new(ErrorKind::UnexpectedEof, "failed to fill whole buffer"))
        } else {
            Ok(())
        }
    }

    /// Creates a "by reference" adaptor for this instance of `Read`.
    ///
    /// The returned adaptor also implements `Read` and will simply borrow this
    /// current reader.
    ///
    fn by_ref(&mut self) -> &mut Self
    where
        Self: Sized,
    {
        self
    }

    /// Transforms this `Read` instance to an [`Iterator`] over its bytes.
    ///
    /// The returned type implements [`Iterator`] where the `Item` is
    /// [`Result`]`<`[`u8`]`, `[`io::Error`]`>`.
    /// The yielded item is [`Ok`] if a byte was successfully read and [`Err`]
    /// otherwise. EOF is mapped to returning [`None`] from this iterator.
    ///
    fn bytes(self) -> Bytes<Self>
    where
        Self: Sized,
    {
        Bytes { inner: self }
    }

    /// Creates an adaptor which will chain this stream with another.
    ///
    /// The returned `Read` instance will first read all bytes from this object
    /// until EOF is encountered. Afterwards the output is equivalent to the
    /// output of `next`.
    ///
    fn chain<R: Read>(self, next: R) -> Chain<Self, R>
    where
        Self: Sized,
    {
        Chain { first: self, second: next, done_first: false }
    }

    /// Creates an adaptor which will read at most `limit` bytes from it.
    ///
    /// This function returns a new instance of `Read` which will read at most
    /// `limit` bytes, after which it will always return EOF ([`Ok(0)`]). Any
    /// read errors will not count towards the number of bytes read and future
    /// calls to [`read()`] may succeed.
    ///
    fn take(self, limit: u64) -> Take<Self>
    where
        Self: Sized,
    {
        Take { inner: self, limit }
    }
}

/// A buffer type used with `Read::read_vectored`.
///
/// It is semantically a wrapper around an `&mut [u8]`, but is guaranteed to be
/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
/// Windows.
#[repr(transparent)]
pub struct IoSliceMut<'a>(sys::io::IoSliceMut<'a>);

unsafe impl<'a> Send for IoSliceMut<'a> {}

unsafe impl<'a> Sync for IoSliceMut<'a> {}

impl<'a> fmt::Debug for IoSliceMut<'a> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(self.0.as_slice(), fmt)
    }
}

impl<'a> IoSliceMut<'a> {
    /// Creates a new `IoSliceMut` wrapping a byte slice.
    ///
    /// # Panics
    ///
    /// Panics on Windows if the slice is larger than 4GB.
    #[inline]
    pub fn new(buf: &'a mut [u8]) -> IoSliceMut<'a> {
        IoSliceMut(sys::io::IoSliceMut::new(buf))
    }

    /// Advance the internal cursor of the slice.
    ///
    /// # Notes
    ///
    /// Elements in the slice may be modified if the cursor is not advanced to
    /// the end of the slice. For example if we have a slice of buffers with 2
    /// `IoSliceMut`s, both of length 8, and we advance the cursor by 10 bytes
    /// the first `IoSliceMut` will be untouched however the second will be
    /// modified to remove the first 2 bytes (10 - 8).
    ///
    #[inline]
    pub fn advance<'b>(bufs: &'b mut [IoSliceMut<'a>], n: usize) -> &'b mut [IoSliceMut<'a>] {
        // Number of buffers to remove.
        let mut remove = 0;
        // Total length of all the to be removed buffers.
        let mut accumulated_len = 0;
        for buf in bufs.iter() {
            if accumulated_len + buf.len() > n {
                break;
            } else {
                accumulated_len += buf.len();
                remove += 1;
            }
        }

        let bufs = &mut bufs[remove..];
        if !bufs.is_empty() {
            bufs[0].0.advance(n - accumulated_len)
        }
        bufs
    }
}

impl<'a> Deref for IoSliceMut<'a> {
    type Target = [u8];

    #[inline]
    fn deref(&self) -> &[u8] {
        self.0.as_slice()
    }
}

impl<'a> DerefMut for IoSliceMut<'a> {
    #[inline]
    fn deref_mut(&mut self) -> &mut [u8] {
        self.0.as_mut_slice()
    }
}

/// A buffer type used with `Write::write_vectored`.
///
/// It is semantically a wrapper around an `&[u8]`, but is guaranteed to be
/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
/// Windows.
#[derive(Copy, Clone)]
#[repr(transparent)]
pub struct IoSlice<'a>(sys::io::IoSlice<'a>);

unsafe impl<'a> Send for IoSlice<'a> {}

unsafe impl<'a> Sync for IoSlice<'a> {}

impl<'a> fmt::Debug for IoSlice<'a> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(self.0.as_slice(), fmt)
    }
}

impl<'a> IoSlice<'a> {
    /// Creates a new `IoSlice` wrapping a byte slice.
    ///
    /// # Panics
    ///
    /// Panics on Windows if the slice is larger than 4GB.
    #[inline]
    pub fn new(buf: &'a [u8]) -> IoSlice<'a> {
        IoSlice(sys::io::IoSlice::new(buf))
    }

    /// Advance the internal cursor of the slice.
    ///
    /// # Notes
    ///
    /// Elements in the slice may be modified if the cursor is not advanced to
    /// the end of the slice. For example if we have a slice of buffers with 2
    /// `IoSlice`s, both of length 8, and we advance the cursor by 10 bytes the
    /// first `IoSlice` will be untouched however the second will be modified to
    /// remove the first 2 bytes (10 - 8).
    ///
    #[inline]
    pub fn advance<'b>(bufs: &'b mut [IoSlice<'a>], n: usize) -> &'b mut [IoSlice<'a>] {
        // Number of buffers to remove.
        let mut remove = 0;
        // Total length of all the to be removed buffers.
        let mut accumulated_len = 0;
        for buf in bufs.iter() {
            if accumulated_len + buf.len() > n {
                break;
            } else {
                accumulated_len += buf.len();
                remove += 1;
            }
        }

        let bufs = &mut bufs[remove..];
        if !bufs.is_empty() {
            bufs[0].0.advance(n - accumulated_len)
        }
        bufs
    }
}

impl<'a> Deref for IoSlice<'a> {
    type Target = [u8];

    #[inline]
    fn deref(&self) -> &[u8] {
        self.0.as_slice()
    }
}

/// A type used to conditionally initialize buffers passed to `Read` methods.
#[derive(Debug)]
pub struct Initializer(bool);

impl Initializer {
    /// Returns a new `Initializer` which will zero out buffers.
    #[inline]
    pub fn zeroing() -> Initializer {
        Initializer(true)
    }

    /// Returns a new `Initializer` which will not zero out buffers.
    ///
    /// # Safety
    ///
    /// This may only be called by `Read`ers which guarantee that they will not
    /// read from buffers passed to `Read` methods, and that the return value of
    /// the method accurately reflects the number of bytes that have been
    /// written to the head of the buffer.
    #[inline]
    pub unsafe fn nop() -> Initializer {
        Initializer(false)
    }

    /// Indicates if a buffer should be initialized.
    #[inline]
    pub fn should_initialize(&self) -> bool {
        self.0
    }

    /// Initializes a buffer if necessary.
    #[inline]
    pub fn initialize(&self, buf: &mut [u8]) {
        if self.should_initialize() {
            unsafe { ptr::write_bytes(buf.as_mut_ptr(), 0, buf.len()) }
        }
    }
}

/// A trait for objects which are byte-oriented sinks.
///
/// Implementors of the `Write` trait are sometimes called 'writers'.
///
/// Writers are defined by two required methods, [`write`] and [`flush`]:
///
/// * The [`write`] method will attempt to write some data into the object,
///   returning how many bytes were successfully written.
///
/// * The [`flush`] method is useful for adaptors and explicit buffers
///   themselves for ensuring that all buffered data has been pushed out to the
///   'true sink'.
///
/// Writers are intended to be composable with one another. Many implementors
/// throughout [`std::io`] take and provide types which implement the `Write`
/// trait.
///
/// [`write`]: #tymethod.write
/// [`flush`]: #tymethod.flush
/// [`std::io`]: index.html
///
pub trait Write {
    /// Write a buffer into this writer, returning how many bytes were written.
    ///
    /// This function will attempt to write the entire contents of `buf`, but
    /// the entire write may not succeed, or the write may also generate an
    /// error. A call to `write` represents *at most one* attempt to write to
    /// any wrapped object.
    ///
    /// Calls to `write` are not guaranteed to block waiting for data to be
    /// written, and a write which would otherwise block can be indicated through
    /// an [`Err`] variant.
    ///
    /// If the return value is [`Ok(n)`] then it must be guaranteed that
    /// `n <= buf.len()`. A return value of `0` typically means that the
    /// underlying object is no longer able to accept bytes and will likely not
    /// be able to in the future as well, or that the buffer provided is empty.
    ///
    /// # Errors
    ///
    /// Each call to `write` may generate an I/O error indicating that the
    /// operation could not be completed. If an error is returned then no bytes
    /// in the buffer were written to this writer.
    ///
    /// It is **not** considered an error if the entire buffer could not be
    /// written to this writer.
    ///
    /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the
    /// write operation should be retried if there is nothing else to do.
    ///
    /// [`Err`]: ../../std/result/enum.Result.html#variant.Err
    /// [`Ok(n)`]:  ../../std/result/enum.Result.html#variant.Ok
    /// [`ErrorKind::Interrupted`]: ../../std/io/enum.ErrorKind.html#variant.Interrupted
    ///
    fn write(&mut self, buf: &[u8]) -> Result<usize>;

    /// Like `write`, except that it writes from a slice of buffers.
    ///
    /// Data is copied from each buffer in order, with the final buffer
    /// read from possibly being only partially consumed. This method must
    /// behave as a call to `write` with the buffers concatenated would.
    ///
    /// The default implementation calls `write` with either the first nonempty
    /// buffer provided, or an empty one if none exists.
    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize> {
        default_write_vectored(|b| self.write(b), bufs)
    }

    /// Flush this output stream, ensuring that all intermediately buffered
    /// contents reach their destination.
    ///
    /// # Errors
    ///
    /// It is considered an error if not all bytes could be written due to
    /// I/O errors or EOF being reached.
    ///
    fn flush(&mut self) -> Result<()>;

    /// Attempts to write an entire buffer into this writer.
    ///
    /// This method will continuously call [`write`] until there is no more data
    /// to be written or an error of non-[`ErrorKind::Interrupted`] kind is
    /// returned. This method will not return until the entire buffer has been
    /// successfully written or such an error occurs. The first error that is
    /// not of [`ErrorKind::Interrupted`] kind generated from this method will be
    /// returned.
    ///
    /// If the buffer contains no data, this will never call [`write`].
    ///
    /// # Errors
    ///
    /// This function will return the first error of
    /// non-[`ErrorKind::Interrupted`] kind that [`write`] returns.
    ///
    /// [`ErrorKind::Interrupted`]: ../../std/io/enum.ErrorKind.html#variant.Interrupted
    /// [`write`]: #tymethod.write
    ///
    fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
        while !buf.is_empty() {
            match self.write(buf) {
                Ok(0) => {
                    return Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer"));
                }
                Ok(n) => buf = &buf[n..],
                Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
                Err(e) => return Err(e),
            }
        }
        Ok(())
    }

    /// Attempts to write multiple buffers into this writer.
    ///
    /// This method will continuously call [`write_vectored`] until there is no
    /// more data to be written or an error of non-[`ErrorKind::Interrupted`]
    /// kind is returned. This method will not return until all buffers have
    /// been successfully written or such an error occurs. The first error that
    /// is not of [`ErrorKind::Interrupted`] kind generated from this method
    /// will be returned.
    ///
    /// If the buffer contains no data, this will never call [`write_vectored`].
    ///
    /// [`write_vectored`]: #method.write_vectored
    /// [`ErrorKind::Interrupted`]: ../../std/io/enum.ErrorKind.html#variant.Interrupted
    ///
    /// # Notes
    ///
    ///
    /// Unlike `io::Write::write_vectored`, this takes a *mutable* reference to
    /// a slice of `IoSlice`s, not an immutable one. That's because we need to
    /// modify the slice to keep track of the bytes already written.
    ///
    /// Once this function returns, the contents of `bufs` are unspecified, as
    /// this depends on how many calls to `write_vectored` were necessary. It is
    /// best to understand this function as taking ownership of `bufs` and to
    /// not use `bufs` afterwards. The underlying buffers, to which the
    /// `IoSlice`s point (but not the `IoSlice`s themselves), are unchanged and
    /// can be reused.
    ///
    fn write_all_vectored(&mut self, mut bufs: &mut [IoSlice<'_>]) -> Result<()> {
        while !bufs.is_empty() {
            match self.write_vectored(bufs) {
                Ok(0) => {
                    return Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer"));
                }
                Ok(n) => bufs = IoSlice::advance(mem::take(&mut bufs), n),
                Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
                Err(e) => return Err(e),
            }
        }
        Ok(())
    }

    /// Writes a formatted string into this writer, returning any error
    /// encountered.
    ///
    /// This method is primarily used to interface with the
    /// [`format_args!`][formatargs] macro, but it is rare that this should
    /// explicitly be called. The [`write!`][write] macro should be favored to
    /// invoke this method instead.
    ///
    /// [formatargs]: ../macro.format_args.html
    /// [write]: ../macro.write.html
    ///
    /// This function internally uses the [`write_all`][writeall] method on
    /// this trait and hence will continuously write data so long as no errors
    /// are received. This also means that partial writes are not indicated in
    /// this signature.
    ///
    /// [writeall]: #method.write_all
    ///
    /// # Errors
    ///
    /// This function will return any I/O error reported while formatting.
    ///
    fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> Result<()> {
        // Create a shim which translates a Write to a fmt::Write and saves
        // off I/O errors. instead of discarding them
        struct Adaptor<'a, T: ?Sized + 'a> {
            inner: &'a mut T,
            error: Result<()>,
        }

        impl<T: Write + ?Sized> fmt::Write for Adaptor<'_, T> {
            fn write_str(&mut self, s: &str) -> fmt::Result {
                match self.inner.write_all(s.as_bytes()) {
                    Ok(()) => Ok(()),
                    Err(e) => {
                        self.error = Err(e);
                        Err(fmt::Error)
                    }
                }
            }
        }

        let mut output = Adaptor { inner: self, error: Ok(()) };
        match fmt::write(&mut output, fmt) {
            Ok(()) => Ok(()),
            Err(..) => {
                // check if the error came from the underlying `Write` or not
                if output.error.is_err() {
                    output.error
                } else {
                    Err(Error::new(ErrorKind::Other, "formatter error"))
                }
            }
        }
    }

    /// Creates a "by reference" adaptor for this instance of `Write`.
    ///
    /// The returned adaptor also implements `Write` and will simply borrow this
    /// current writer.
    ///
    fn by_ref(&mut self) -> &mut Self
    where
        Self: Sized,
    {
        self
    }
}

/// The `Seek` trait provides a cursor which can be moved within a stream of
/// bytes.
///
/// The stream typically has a fixed size, allowing seeking relative to either
/// end or the current offset.
///
pub trait Seek {
    /// Seek to an offset, in bytes, in a stream.
    ///
    /// A seek beyond the end of a stream is allowed, but behavior is defined
    /// by the implementation.
    ///
    /// If the seek operation completed successfully,
    /// this method returns the new position from the start of the stream.
    /// That position can be used later with [`SeekFrom::Start`].
    ///
    /// # Errors
    ///
    /// Seeking to a negative offset is considered an error.
    ///
    /// [`SeekFrom::Start`]: enum.SeekFrom.html#variant.Start
    fn seek(&mut self, pos: SeekFrom) -> Result<u64>;

    /// Returns the length of this stream (in bytes).
    ///
    /// This method is implemented using up to three seek operations. If this
    /// method returns successfully, the seek position is unchanged (i.e. the
    /// position before calling this method is the same as afterwards).
    /// However, if this method returns an error, the seek position is
    /// unspecified.
    ///
    /// If you need to obtain the length of *many* streams and you don't care
    /// about the seek position afterwards, you can reduce the number of seek
    /// operations by simply calling `seek(SeekFrom::End(0))` and using its
    /// return value (it is also the stream length).
    ///
    /// Note that length of a stream can change over time (for example, when
    /// data is appended to a file). So calling this method multiple times does
    /// not necessarily return the same length each time.
    ///
    fn stream_len(&mut self) -> Result<u64> {
        let old_pos = self.stream_position()?;
        let len = self.seek(SeekFrom::End(0))?;

        // Avoid seeking a third time when we were already at the end of the
        // stream. The branch is usually way cheaper than a seek operation.
        if old_pos != len {
            self.seek(SeekFrom::Start(old_pos))?;
        }

        Ok(len)
    }

    /// Returns the current seek position from the start of the stream.
    ///
    /// This is equivalent to `self.seek(SeekFrom::Current(0))`.
    ///
    fn stream_position(&mut self) -> Result<u64> {
        self.seek(SeekFrom::Current(0))
    }
}

/// Enumeration of possible methods to seek within an I/O object.
///
/// It is used by the [`Seek`] trait.
///
/// [`Seek`]: trait.Seek.html
#[derive(Copy, PartialEq, Eq, Clone, Debug)]
pub enum SeekFrom {
    /// Sets the offset to the provided number of bytes.
    Start(u64),

    /// Sets the offset to the size of this object plus the specified number of
    /// bytes.
    ///
    /// It is possible to seek beyond the end of an object, but it's an error to
    /// seek before byte 0.
    End(i64),

    /// Sets the offset to the current position plus the specified number of
    /// bytes.
    ///
    /// It is possible to seek beyond the end of an object, but it's an error to
    /// seek before byte 0.
    Current(i64),
}

fn read_until<R: BufRead + ?Sized>(r: &mut R, delim: u8, buf: &mut Vec<u8>) -> Result<usize> {
    let mut read = 0;
    loop {
        let (done, used) = {
            let available = match r.fill_buf() {
                Ok(n) => n,
                Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
                Err(e) => return Err(e),
            };
            match memchr::memchr(delim, available) {
                Some(i) => {
                    buf.extend_from_slice(&available[..=i]);
                    (true, i + 1)
                }
                None => {
                    buf.extend_from_slice(available);
                    (false, available.len())
                }
            }
        };
        r.consume(used);
        read += used;
        if done || used == 0 {
            return Ok(read);
        }
    }
}

/// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it
/// to perform extra ways of reading.
///
/// For example, reading line-by-line is inefficient without using a buffer, so
/// if you want to read by line, you'll need `BufRead`, which includes a
/// [`read_line`] method as well as a [`lines`] iterator.
///
pub trait BufRead: Read {
    /// Returns the contents of the internal buffer, filling it with more data
    /// from the inner reader if it is empty.
    ///
    /// This function is a lower-level call. It needs to be paired with the
    /// [`consume`] method to function properly. When calling this
    /// method, none of the contents will be "read" in the sense that later
    /// calling `read` may return the same contents. As such, [`consume`] must
    /// be called with the number of bytes that are consumed from this buffer to
    /// ensure that the bytes are never returned twice.
    ///
    /// [`consume`]: #tymethod.consume
    ///
    /// An empty buffer returned indicates that the stream has reached EOF.
    ///
    /// # Errors
    ///
    /// This function will return an I/O error if the underlying reader was
    /// read, but returned an error.
    ///
    fn fill_buf(&mut self) -> Result<&[u8]>;

    /// Tells this buffer that `amt` bytes have been consumed from the buffer,
    /// so they should no longer be returned in calls to `read`.
    ///
    /// This function is a lower-level call. It needs to be paired with the
    /// [`fill_buf`] method to function properly. This function does
    /// not perform any I/O, it simply informs this object that some amount of
    /// its buffer, returned from [`fill_buf`], has been consumed and should
    /// no longer be returned. As such, this function may do odd things if
    /// [`fill_buf`] isn't called before calling it.
    ///
    /// The `amt` must be `<=` the number of bytes in the buffer returned by
    /// [`fill_buf`].
    ///
    fn consume(&mut self, amt: usize);

    /// Read all bytes into `buf` until the delimiter `byte` or EOF is reached.
    ///
    /// This function will read bytes from the underlying stream until the
    /// delimiter or EOF is found. Once found, all bytes up to, and including,
    /// the delimiter (if found) will be appended to `buf`.
    ///
    /// If successful, this function will return the total number of bytes read.
    ///
    /// # Errors
    ///
    /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
    /// will otherwise return any errors returned by [`fill_buf`].
    ///
    /// If an I/O error is encountered then all bytes read so far will be
    /// present in `buf` and its length will have been adjusted appropriately.
    ///
    /// [`fill_buf`]: #tymethod.fill_buf
    /// [`ErrorKind::Interrupted`]: enum.ErrorKind.html#variant.Interrupted
    ///
    fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
        read_until(self, byte, buf)
    }

    /// Read all bytes until a newline (the 0xA byte) is reached, and append
    /// them to the provided buffer.
    ///
    /// This function will read bytes from the underlying stream until the
    /// newline delimiter (the 0xA byte) or EOF is found. Once found, all bytes
    /// up to, and including, the delimiter (if found) will be appended to
    /// `buf`.
    ///
    /// If successful, this function will return the total number of bytes read.
    ///
    /// If this function returns `Ok(0)`, the stream has reached EOF.
    ///
    /// # Errors
    ///
    /// This function has the same error semantics as [`read_until`] and will
    /// also return an error if the read bytes are not valid UTF-8. If an I/O
    /// error is encountered then `buf` may contain some bytes already read in
    /// the event that all data read so far was valid UTF-8.
    ///
    /// [`read_until`]: #method.read_until
    ///
    fn read_line(&mut self, buf: &mut String) -> Result<usize> {
        // Note that we are not calling the `.read_until` method here, but
        // rather our hardcoded implementation. For more details as to why, see
        // the comments in `read_to_end`.
        append_to_string(buf, |b| read_until(self, b'\n', b))
    }

    /// Returns an iterator over the contents of this reader split on the byte
    /// `byte`.
    ///
    /// The iterator returned from this function will return instances of
    /// [`io::Result`]`<`[`Vec<u8>`]`>`. Each vector returned will *not* have
    /// the delimiter byte at the end.
    ///
    /// This function will yield errors whenever [`read_until`] would have
    /// also yielded an error.
    ///
    /// [`io::Result`]: type.Result.html
    /// [`Vec<u8>`]: ../vec/struct.Vec.html
    /// [`read_until`]: #method.read_until
    ///
    fn split(self, byte: u8) -> Split<Self>
    where
        Self: Sized,
    {
        Split { buf: self, delim: byte }
    }

    /// Returns an iterator over the lines of this reader.
    ///
    /// The iterator returned from this function will yield instances of
    /// [`io::Result`]`<`[`String`]`>`. Each string returned will *not* have a newline
    /// byte (the 0xA byte) or CRLF (0xD, 0xA bytes) at the end.
    ///
    /// [`io::Result`]: type.Result.html
    /// [`String`]: ../string/struct.String.html
    ///
    /// # Errors
    ///
    /// Each line of the iterator has the same error semantics as [`BufRead::read_line`].
    ///
    /// [`BufRead::read_line`]: trait.BufRead.html#method.read_line
    fn lines(self) -> Lines<Self>
    where
        Self: Sized,
    {
        Lines { buf: self }
    }
}

/// Adaptor to chain together two readers.
///
/// This struct is generally created by calling [`chain`] on a reader.
/// Please see the documentation of [`chain`] for more details.
///
/// [`chain`]: trait.Read.html#method.chain
pub struct Chain<T, U> {
    first: T,
    second: U,
    done_first: bool,
}

impl<T, U> Chain<T, U> {
    /// Consumes the `Chain`, returning the wrapped readers.
    ///
    pub fn into_inner(self) -> (T, U) {
        (self.first, self.second)
    }

    /// Gets references to the underlying readers in this `Chain`.
    ///
    pub fn get_ref(&self) -> (&T, &U) {
        (&self.first, &self.second)
    }

    /// Gets mutable references to the underlying readers in this `Chain`.
    ///
    /// Care should be taken to avoid modifying the internal I/O state of the
    /// underlying readers as doing so may corrupt the internal state of this
    /// `Chain`.
    ///
    pub fn get_mut(&mut self) -> (&mut T, &mut U) {
        (&mut self.first, &mut self.second)
    }
}

impl<T: fmt::Debug, U: fmt::Debug> fmt::Debug for Chain<T, U> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Chain").field("t", &self.first).field("u", &self.second).finish()
    }
}

impl<T: Read, U: Read> Read for Chain<T, U> {
    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
        if !self.done_first {
            match self.first.read(buf)? {
                0 if !buf.is_empty() => self.done_first = true,
                n => return Ok(n),
            }
        }
        self.second.read(buf)
    }

    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
        if !self.done_first {
            match self.first.read_vectored(bufs)? {
                0 if bufs.iter().any(|b| !b.is_empty()) => self.done_first = true,
                n => return Ok(n),
            }
        }
        self.second.read_vectored(bufs)
    }

    unsafe fn initializer(&self) -> Initializer {
        let initializer = self.first.initializer();
        if initializer.should_initialize() { initializer } else { self.second.initializer() }
    }
}

impl<T: BufRead, U: BufRead> BufRead for Chain<T, U> {
    fn fill_buf(&mut self) -> Result<&[u8]> {
        if !self.done_first {
            match self.first.fill_buf()? {
                buf if buf.is_empty() => {
                    self.done_first = true;
                }
                buf => return Ok(buf),
            }
        }
        self.second.fill_buf()
    }

    fn consume(&mut self, amt: usize) {
        if !self.done_first { self.first.consume(amt) } else { self.second.consume(amt) }
    }
}

/// Reader adaptor which limits the bytes read from an underlying reader.
///
/// This struct is generally created by calling [`take`] on a reader.
/// Please see the documentation of [`take`] for more details.
///
/// [`take`]: trait.Read.html#method.take
#[derive(Debug)]
pub struct Take<T> {
    inner: T,
    limit: u64,
}

impl<T> Take<T> {
    /// Returns the number of bytes that can be read before this instance will
    /// return EOF.
    ///
    /// # Note
    ///
    /// This instance may reach `EOF` after reading fewer bytes than indicated by
    /// this method if the underlying [`Read`] instance reaches EOF.
    ///
    /// [`Read`]: ../../std/io/trait.Read.html
    ///
    pub fn limit(&self) -> u64 {
        self.limit
    }

    /// Sets the number of bytes that can be read before this instance will
    /// return EOF. This is the same as constructing a new `Take` instance, so
    /// the amount of bytes read and the previous limit value don't matter when
    /// calling this method.
    ///
    pub fn set_limit(&mut self, limit: u64) {
        self.limit = limit;
    }

    /// Consumes the `Take`, returning the wrapped reader.
    ///
    pub fn into_inner(self) -> T {
        self.inner
    }

    /// Gets a reference to the underlying reader.
    ///
    pub fn get_ref(&self) -> &T {
        &self.inner
    }

    /// Gets a mutable reference to the underlying reader.
    ///
    /// Care should be taken to avoid modifying the internal I/O state of the
    /// underlying reader as doing so may corrupt the internal limit of this
    /// `Take`.
    ///
    pub fn get_mut(&mut self) -> &mut T {
        &mut self.inner
    }
}

impl<T: Read> Read for Take<T> {
    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
        // Don't call into inner reader at all at EOF because it may still block
        if self.limit == 0 {
            return Ok(0);
        }

        let max = cmp::min(buf.len() as u64, self.limit) as usize;
        let n = self.inner.read(&mut buf[..max])?;
        self.limit -= n as u64;
        Ok(n)
    }

    unsafe fn initializer(&self) -> Initializer {
        self.inner.initializer()
    }

    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
        // Pass in a reservation_size closure that respects the current value
        // of limit for each read. If we hit the read limit, this prevents the
        // final zero-byte read from allocating again.
        read_to_end_with_reservation(self, buf, |self_| cmp::min(self_.limit, 32) as usize)
    }
}

impl<T: BufRead> BufRead for Take<T> {
    fn fill_buf(&mut self) -> Result<&[u8]> {
        // Don't call into inner reader at all at EOF because it may still block
        if self.limit == 0 {
            return Ok(&[]);
        }

        let buf = self.inner.fill_buf()?;
        let cap = cmp::min(buf.len() as u64, self.limit) as usize;
        Ok(&buf[..cap])
    }

    fn consume(&mut self, amt: usize) {
        // Don't let callers reset the limit by passing an overlarge value
        let amt = cmp::min(amt as u64, self.limit) as usize;
        self.limit -= amt as u64;
        self.inner.consume(amt);
    }
}

/// An iterator over `u8` values of a reader.
///
/// This struct is generally created by calling [`bytes`] on a reader.
/// Please see the documentation of [`bytes`] for more details.
///
/// [`bytes`]: trait.Read.html#method.bytes
#[derive(Debug)]
pub struct Bytes<R> {
    inner: R,
}

impl<R: Read> Iterator for Bytes<R> {
    type Item = Result<u8>;

    fn next(&mut self) -> Option<Result<u8>> {
        let mut byte = 0;
        loop {
            return match self.inner.read(slice::from_mut(&mut byte)) {
                Ok(0) => None,
                Ok(..) => Some(Ok(byte)),
                Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
                Err(e) => Some(Err(e)),
            };
        }
    }
}

/// An iterator over the contents of an instance of `BufRead` split on a
/// particular byte.
///
/// This struct is generally created by calling [`split`] on a `BufRead`.
/// Please see the documentation of [`split`] for more details.
///
/// [`split`]: trait.BufRead.html#method.split
#[derive(Debug)]
pub struct Split<B> {
    buf: B,
    delim: u8,
}

impl<B: BufRead> Iterator for Split<B> {
    type Item = Result<Vec<u8>>;

    fn next(&mut self) -> Option<Result<Vec<u8>>> {
        let mut buf = Vec::new();
        match self.buf.read_until(self.delim, &mut buf) {
            Ok(0) => None,
            Ok(_n) => {
                if buf[buf.len() - 1] == self.delim {
                    buf.pop();
                }
                Some(Ok(buf))
            }
            Err(e) => Some(Err(e)),
        }
    }
}

/// An iterator over the lines of an instance of `BufRead`.
///
/// This struct is generally created by calling [`lines`] on a `BufRead`.
/// Please see the documentation of [`lines`] for more details.
///
/// [`lines`]: trait.BufRead.html#method.lines
#[derive(Debug)]
pub struct Lines<B> {
    buf: B,
}

impl<B: BufRead> Iterator for Lines<B> {
    type Item = Result<String>;

    fn next(&mut self) -> Option<Result<String>> {
        let mut buf = String::new();
        match self.buf.read_line(&mut buf) {
            Ok(0) => None,
            Ok(_n) => {
                if buf.ends_with('\n') {
                    buf.pop();
                    if buf.ends_with('\r') {
                        buf.pop();
                    }
                }
                Some(Ok(buf))
            }
            Err(e) => Some(Err(e)),
        }
    }
}