1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License..

//! This module provides constants which are specific to the implementation
//! of the `f32` floating point data type.
//!
//! *[See also the `f32` primitive type](../../std/primitive.f32.html).*
//!
//! Mathematically significant numbers are provided in the `consts` sub-module.
//!
//! Although using these constants won't cause compilation warnings,
//! new code should use the associated constants directly on the primitive type.

#![allow(missing_docs)]

use core::intrinsics;
use crate::sys::cmath;

pub use core::f32::consts;
pub use core::f32::{DIGITS, EPSILON, MANTISSA_DIGITS, RADIX};
pub use core::f32::{INFINITY, MAX_10_EXP, NAN, NEG_INFINITY};
pub use core::f32::{MAX, MIN, MIN_POSITIVE};
pub use core::f32::{MAX_EXP, MIN_10_EXP, MIN_EXP};

#[lang = "f32_runtime"]
impl f32 {
    /// Returns the largest integer less than or equal to a number.
    ///
    #[inline]
    pub fn floor(self) -> f32 {
        unsafe { intrinsics::floorf32(self) }
    }

    /// Returns the smallest integer greater than or equal to a number.
    ///
    #[inline]
    pub fn ceil(self) -> f32 {
        unsafe { intrinsics::ceilf32(self) }
    }

    /// Returns the nearest integer to a number. Round half-way cases away from
    /// `0.0`.
    ///
    #[inline]
    pub fn round(self) -> f32 {
        unsafe { intrinsics::roundf32(self) }
    }

    /// Returns the integer part of a number.
    ///
    #[inline]
    pub fn trunc(self) -> f32 {
        unsafe { intrinsics::truncf32(self) }
    }

    /// Returns the fractional part of a number.
    ///
    #[inline]
    pub fn fract(self) -> f32 {
        self - self.trunc()
    }

    /// Computes the absolute value of `self`. Returns `NAN` if the
    /// number is `NAN`.
    ///
    #[inline]
    pub fn abs(self) -> f32 {
        unsafe { intrinsics::fabsf32(self) }
    }

    /// Returns a number that represents the sign of `self`.
    ///
    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
    /// - `NAN` if the number is `NAN`
    ///
    #[inline]
    pub fn signum(self) -> f32 {
        if self.is_nan() { NAN } else { 1.0_f32.copysign(self) }
    }

    /// Returns a number composed of the magnitude of `self` and the sign of
    /// `sign`.
    ///
    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise
    /// equal to `-self`. If `self` is a `NAN`, then a `NAN` with the sign of
    /// `sign` is returned.
    ///
    #[inline]
    pub fn copysign(self, sign: f32) -> f32 {
        unsafe { intrinsics::copysignf32(self, sign) }
    }

    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
    /// error, yielding a more accurate result than an unfused multiply-add.
    ///
    /// Using `mul_add` can be more performant than an unfused multiply-add if
    /// the target architecture has a dedicated `fma` CPU instruction.
    ///
    #[inline]
    pub fn mul_add(self, a: f32, b: f32) -> f32 {
        unsafe { intrinsics::fmaf32(self, a, b) }
    }

    /// Calculates Euclidean division, the matching method for `rem_euclid`.
    ///
    /// This computes the integer `n` such that
    /// `self = n * rhs + self.rem_euclid(rhs)`.
    /// In other words, the result is `self / rhs` rounded to the integer `n`
    /// such that `self >= n * rhs`.
    ///
    #[inline]
    pub fn div_euclid(self, rhs: f32) -> f32 {
        let q = (self / rhs).trunc();
        if self % rhs < 0.0 {
            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
        }
        q
    }

    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
    ///
    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
    /// most cases. However, due to a floating point round-off error it can
    /// result in `r == rhs.abs()`, violating the mathematical definition, if
    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
    /// This result is not an element of the function's codomain, but it is the
    /// closest floating point number in the real numbers and thus fulfills the
    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
    /// approximatively.
    ///
    #[inline]
    pub fn rem_euclid(self, rhs: f32) -> f32 {
        let r = self % rhs;
        if r < 0.0 { r + rhs.abs() } else { r }
    }

    /// Raises a number to an integer power.
    ///
    /// Using this function is generally faster than using `powf`
    ///
    #[inline]
    pub fn powi(self, n: i32) -> f32 {
        unsafe { intrinsics::powif32(self, n) }
    }

    /// Raises a number to a floating point power.
    ///
    #[inline]
    pub fn powf(self, n: f32) -> f32 {
        unsafe { intrinsics::powf32(self, n) }
    }

    /// Returns the square root of a number.
    ///
    /// Returns NaN if `self` is a negative number.
    ///
    #[inline]
    pub fn sqrt(self) -> f32 {
        unsafe { intrinsics::sqrtf32(self) }
    }

    /// Returns `e^(self)`, (the exponential function).
    ///
    #[inline]
    pub fn exp(self) -> f32 {
        unsafe { intrinsics::expf32(self) }
    }

    /// Returns `2^(self)`.
    ///
    #[inline]
    pub fn exp2(self) -> f32 {
        unsafe { intrinsics::exp2f32(self) }
    }

    /// Returns the natural logarithm of the number.
    ///
    #[inline]
    pub fn ln(self) -> f32 {
        unsafe { intrinsics::logf32(self) }
    }

    /// Returns the logarithm of the number with respect to an arbitrary base.
    ///
    /// The result may not be correctly rounded owing to implementation details;
    /// `self.log2()` can produce more accurate results for base 2, and
    /// `self.log10()` can produce more accurate results for base 10.
    ///
    #[inline]
    pub fn log(self, base: f32) -> f32 {
        self.ln() / base.ln()
    }

    /// Returns the base 2 logarithm of the number.
    ///
    #[inline]
    pub fn log2(self) -> f32 {
        #[cfg(target_os = "android")]
        return crate::sys::android::log2f32(self);
        #[cfg(not(target_os = "android"))]
        return unsafe { intrinsics::log2f32(self) };
    }

    /// Returns the base 10 logarithm of the number.
    ///
    #[inline]
    pub fn log10(self) -> f32 {
        unsafe { intrinsics::log10f32(self) }
    }

    /// The positive difference of two numbers.
    ///
    /// * If `self <= other`: `0:0`
    /// * Else: `self - other`
    ///
    #[inline]
    pub fn abs_sub(self, other: f32) -> f32 {
        unsafe { cmath::fdimf(self, other) }
    }

    /// Returns the cubic root of a number.
    ///
    #[inline]
    pub fn cbrt(self) -> f32 {
        unsafe { cmath::cbrtf(self) }
    }

    /// Calculates the length of the hypotenuse of a right-angle triangle given
    /// legs of length `x` and `y`.
    ///
    #[inline]
    pub fn hypot(self, other: f32) -> f32 {
        unsafe { cmath::hypotf(self, other) }
    }

    /// Computes the sine of a number (in radians).
    ///
    #[inline]
    pub fn sin(self) -> f32 {
        unsafe { intrinsics::sinf32(self) }
    }

    /// Computes the cosine of a number (in radians).
    ///
    #[inline]
    pub fn cos(self) -> f32 {
        unsafe { intrinsics::cosf32(self) }
    }

    /// Computes the tangent of a number (in radians).
    ///
    #[inline]
    pub fn tan(self) -> f32 {
        unsafe { cmath::tanf(self) }
    }

    /// Computes the arcsine of a number. Return value is in radians in
    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
    /// [-1, 1].
    ///
    #[inline]
    pub fn asin(self) -> f32 {
        unsafe { cmath::asinf(self) }
    }

    /// Computes the arccosine of a number. Return value is in radians in
    /// the range [0, pi] or NaN if the number is outside the range
    /// [-1, 1].
    ///
    #[inline]
    pub fn acos(self) -> f32 {
        unsafe { cmath::acosf(self) }
    }

    /// Computes the arctangent of a number. Return value is in radians in the
    /// range [-pi/2, pi/2];
    ///
    #[inline]
    pub fn atan(self) -> f32 {
        unsafe { cmath::atanf(self) }
    }

    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
    ///
    /// * `x = 0`, `y = 0`: `0`
    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
    ///
    #[inline]
    pub fn atan2(self, other: f32) -> f32 {
        unsafe { cmath::atan2f(self, other) }
    }

    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
    /// `(sin(x), cos(x))`.
    ///
    #[inline]
    pub fn sin_cos(self) -> (f32, f32) {
        (self.sin(), self.cos())
    }

    /// Returns `e^(self) - 1` in a way that is accurate even if the
    /// number is close to zero.
    ///
    #[inline]
    pub fn exp_m1(self) -> f32 {
        unsafe { cmath::expm1f(self) }
    }

    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
    /// the operations were performed separately.
    ///
    #[inline]
    pub fn ln_1p(self) -> f32 {
        unsafe { cmath::log1pf(self) }
    }

    /// Hyperbolic sine function.
    ///
    #[inline]
    pub fn sinh(self) -> f32 {
        unsafe { cmath::sinhf(self) }
    }

    /// Hyperbolic cosine function.
    ///
    #[inline]
    pub fn cosh(self) -> f32 {
        unsafe { cmath::coshf(self) }
    }

    /// Hyperbolic tangent function.
    ///
    #[inline]
    pub fn tanh(self) -> f32 {
        unsafe { cmath::tanhf(self) }
    }

    /// Inverse hyperbolic sine function.
    ///
    #[inline]
    pub fn asinh(self) -> f32 {
        if self == NEG_INFINITY {
            NEG_INFINITY
        } else {
            (self + ((self * self) + 1.0).sqrt()).ln().copysign(self)
        }
    }

    /// Inverse hyperbolic cosine function.
    ///
    #[inline]
    pub fn acosh(self) -> f32 {
        if self < 1.0 { crate::f32::NAN } else { (self + ((self * self) - 1.0).sqrt()).ln() }
    }

    /// Inverse hyperbolic tangent function.
    ///
    #[inline]
    pub fn atanh(self) -> f32 {
        0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
    }

    /// Restrict a value to a certain interval unless it is NaN.
    ///
    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
    /// less than `min`. Otherwise this returns `self`.
    ///
    /// Not that this function returns NaN if the initial value was NaN as
    /// well.
    ///
    /// # Panics
    ///
    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
    ///
    #[inline]
    pub fn clamp(self, min: f32, max: f32) -> f32 {
        assert!(min <= max);
        let mut x = self;
        if x < min {
            x = min;
        }
        if x > max {
            x = max;
        }
        x
    }
}