pub struct LinRegressor { /* private fields */ }
Expand description

Linear Regression Model.

Contains option for optimized parameter.

Implementations

Get the parameters from the model.

Returns an option that is None if the model has not been trained.

Train the linear regressor using Gradient Descent.

Examples
use rusty_machine::learning::lin_reg::LinRegressor;
use rusty_machine::learning::SupModel;
use rusty_machine::linalg::Matrix;
use rusty_machine::linalg::Vector;

let inputs = Matrix::new(4,1,vec![1.0,3.0,5.0,7.0]);
let targets = Vector::new(vec![1.,5.,9.,13.]);

let mut lin_mod = LinRegressor::default();

// Train the model
lin_mod.train_with_optimization(&inputs, &targets);

// Now we'll predict a new point
let new_point = Matrix::new(1,1,vec![10.]);
let _ = lin_mod.predict(&new_point).unwrap();

Trait Implementations

Formats the value using the given formatter. Read more
Returns the “default value” for a type. Read more
The input data type to the model.
The target data type to the model.
Compute the gradient for the model.

Train the linear regression model.

Takes training data and output values as input.

Examples
use rusty_machine::learning::lin_reg::LinRegressor;
use rusty_machine::linalg::Matrix;
use rusty_machine::linalg::Vector;
use rusty_machine::learning::SupModel;

let mut lin_mod = LinRegressor::default();
let inputs = Matrix::new(3,1, vec![2.0, 3.0, 4.0]);
let targets = Vector::new(vec![5.0, 6.0, 7.0]);

lin_mod.train(&inputs, &targets).unwrap();

Predict output value from input data.

Model must be trained before prediction can be made.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of [From]<T> for U chooses to do.

The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.