Struct rusty_machine::learning::lin_reg::LinRegressor
source · [−]pub struct LinRegressor { /* private fields */ }
Expand description
Linear Regression Model.
Contains option for optimized parameter.
Implementations
sourceimpl LinRegressor
impl LinRegressor
sourcepub fn parameters(&self) -> Option<&Vector<f64>>
pub fn parameters(&self) -> Option<&Vector<f64>>
Get the parameters from the model.
Returns an option that is None if the model has not been trained.
sourceimpl LinRegressor
impl LinRegressor
sourcepub fn train_with_optimization(
&mut self,
inputs: &Matrix<f64>,
targets: &Vector<f64>
)
pub fn train_with_optimization(
&mut self,
inputs: &Matrix<f64>,
targets: &Vector<f64>
)
Train the linear regressor using Gradient Descent.
Examples
use rusty_machine::learning::lin_reg::LinRegressor;
use rusty_machine::learning::SupModel;
use rusty_machine::linalg::Matrix;
use rusty_machine::linalg::Vector;
let inputs = Matrix::new(4,1,vec![1.0,3.0,5.0,7.0]);
let targets = Vector::new(vec![1.,5.,9.,13.]);
let mut lin_mod = LinRegressor::default();
// Train the model
lin_mod.train_with_optimization(&inputs, &targets);
// Now we'll predict a new point
let new_point = Matrix::new(1,1,vec![10.]);
let _ = lin_mod.predict(&new_point).unwrap();
Trait Implementations
sourceimpl Debug for LinRegressor
impl Debug for LinRegressor
sourceimpl Default for LinRegressor
impl Default for LinRegressor
sourcefn default() -> LinRegressor
fn default() -> LinRegressor
Returns the “default value” for a type. Read more
sourceimpl Optimizable for LinRegressor
impl Optimizable for LinRegressor
sourceimpl SupModel<Matrix<f64>, Vector<f64>> for LinRegressor
impl SupModel<Matrix<f64>, Vector<f64>> for LinRegressor
sourcefn train(
&mut self,
inputs: &Matrix<f64>,
targets: &Vector<f64>
) -> LearningResult<()>
fn train(
&mut self,
inputs: &Matrix<f64>,
targets: &Vector<f64>
) -> LearningResult<()>
Train the linear regression model.
Takes training data and output values as input.
Examples
use rusty_machine::learning::lin_reg::LinRegressor;
use rusty_machine::linalg::Matrix;
use rusty_machine::linalg::Vector;
use rusty_machine::learning::SupModel;
let mut lin_mod = LinRegressor::default();
let inputs = Matrix::new(3,1, vec![2.0, 3.0, 4.0]);
let targets = Vector::new(vec![5.0, 6.0, 7.0]);
lin_mod.train(&inputs, &targets).unwrap();
sourcefn predict(&self, inputs: &Matrix<f64>) -> LearningResult<Vector<f64>>
fn predict(&self, inputs: &Matrix<f64>) -> LearningResult<Vector<f64>>
Predict output value from input data.
Model must be trained before prediction can be made.
Auto Trait Implementations
impl RefUnwindSafe for LinRegressor
impl Send for LinRegressor
impl Sync for LinRegressor
impl Unpin for LinRegressor
impl UnwindSafe for LinRegressor
Blanket Implementations
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
const: unstablefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more