Struct rand_distr::SkewNormal
source · [−]pub struct SkewNormal<F>where
F: Float,
StandardNormal: Distribution<F>,{ /* private fields */ }
Expand description
The skew normal distribution SN(location, scale, shape)
.
The skew normal distribution is a generalization of the
Normal
distribution to allow for non-zero skewness.
It has the density function, for scale > 0
,
f(x) = 2 / scale * phi((x - location) / scale) * Phi(alpha * (x - location) / scale)
where phi
and Phi
are the density and distribution of a standard normal variable.
Example
use rand_distr::{SkewNormal, Distribution};
// location 2, scale 3, shape 1
let skew_normal = SkewNormal::new(2.0, 3.0, 1.0).unwrap();
let v = skew_normal.sample(&mut rand::thread_rng());
println!("{} is from a SN(2, 3, 1) distribution", v)
Implementation details
We are using the algorithm from A Method to Simulate the Skew Normal Distribution.
Implementations
sourceimpl<F> SkewNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
impl<F> SkewNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
sourcepub fn new(location: F, scale: F, shape: F) -> Result<SkewNormal<F>, Error>
pub fn new(location: F, scale: F, shape: F) -> Result<SkewNormal<F>, Error>
Construct, from location, scale and shape.
Parameters:
- location (unrestricted)
- scale (must be finite and larger than zero)
- shape (must be finite)
Trait Implementations
sourceimpl<F: Clone> Clone for SkewNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
impl<F: Clone> Clone for SkewNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
sourcefn clone(&self) -> SkewNormal<F>
fn clone(&self) -> SkewNormal<F>
Returns a copy of the value. Read more
1.0.0 · sourceconst fn clone_from(&mut self, source: &Self)
const fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresourceimpl<F: Debug> Debug for SkewNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
impl<F: Debug> Debug for SkewNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
sourceimpl<F> Distribution<F> for SkewNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
impl<F> Distribution<F> for SkewNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
sourcefn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F
Generate a random value of
T
, using rng
as the source of randomness.sourcefn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>ⓘNotable traits for DistIter<D, R, T>impl<D, R, T> Iterator for DistIter<D, R, T>where
D: Distribution<T>,
R: Rng, type Item = T;
where
R: Rng,
fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>ⓘNotable traits for DistIter<D, R, T>impl<D, R, T> Iterator for DistIter<D, R, T>where
D: Distribution<T>,
R: Rng, type Item = T;
where
R: Rng,
D: Distribution<T>,
R: Rng, type Item = T;
Create an iterator that generates random values of
T
, using rng
as
the source of randomness. Read moreimpl<F: Copy> Copy for SkewNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
Auto Trait Implementations
impl<F> RefUnwindSafe for SkewNormal<F>where
F: RefUnwindSafe,
impl<F> Send for SkewNormal<F>where
F: Send,
impl<F> Sync for SkewNormal<F>where
F: Sync,
impl<F> Unpin for SkewNormal<F>where
F: Unpin,
impl<F> UnwindSafe for SkewNormal<F>where
F: UnwindSafe,
Blanket Implementations
sourceimpl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more