Struct rand_distr::NormalInverseGaussian
source · [−]pub struct NormalInverseGaussian<F>where
F: Float,
StandardNormal: Distribution<F>,
Standard: Distribution<F>,{ /* private fields */ }
Expand description
Implementations
sourceimpl<F> NormalInverseGaussian<F>where
F: Float,
StandardNormal: Distribution<F>,
Standard: Distribution<F>,
impl<F> NormalInverseGaussian<F>where
F: Float,
StandardNormal: Distribution<F>,
Standard: Distribution<F>,
sourcepub fn new(alpha: F, beta: F) -> Result<NormalInverseGaussian<F>, Error>
pub fn new(alpha: F, beta: F) -> Result<NormalInverseGaussian<F>, Error>
Construct a new NormalInverseGaussian
distribution with the given alpha (tail heaviness) and
beta (asymmetry) parameters.
Trait Implementations
sourceimpl<F: Clone> Clone for NormalInverseGaussian<F>where
F: Float,
StandardNormal: Distribution<F>,
Standard: Distribution<F>,
impl<F: Clone> Clone for NormalInverseGaussian<F>where
F: Float,
StandardNormal: Distribution<F>,
Standard: Distribution<F>,
sourcefn clone(&self) -> NormalInverseGaussian<F>
fn clone(&self) -> NormalInverseGaussian<F>
Returns a copy of the value. Read more
1.0.0 · sourceconst fn clone_from(&mut self, source: &Self)
const fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresourceimpl<F: Debug> Debug for NormalInverseGaussian<F>where
F: Float,
StandardNormal: Distribution<F>,
Standard: Distribution<F>,
impl<F: Debug> Debug for NormalInverseGaussian<F>where
F: Float,
StandardNormal: Distribution<F>,
Standard: Distribution<F>,
sourceimpl<F> Distribution<F> for NormalInverseGaussian<F>where
F: Float,
StandardNormal: Distribution<F>,
Standard: Distribution<F>,
impl<F> Distribution<F> for NormalInverseGaussian<F>where
F: Float,
StandardNormal: Distribution<F>,
Standard: Distribution<F>,
sourcefn sample<R>(&self, rng: &mut R) -> Fwhere
R: Rng + ?Sized,
fn sample<R>(&self, rng: &mut R) -> Fwhere
R: Rng + ?Sized,
Generate a random value of
T
, using rng
as the source of randomness.sourcefn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>ⓘNotable traits for DistIter<D, R, T>impl<D, R, T> Iterator for DistIter<D, R, T>where
D: Distribution<T>,
R: Rng, type Item = T;
where
R: Rng,
fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>ⓘNotable traits for DistIter<D, R, T>impl<D, R, T> Iterator for DistIter<D, R, T>where
D: Distribution<T>,
R: Rng, type Item = T;
where
R: Rng,
D: Distribution<T>,
R: Rng, type Item = T;
Create an iterator that generates random values of
T
, using rng
as
the source of randomness. Read moreimpl<F: Copy> Copy for NormalInverseGaussian<F>where
F: Float,
StandardNormal: Distribution<F>,
Standard: Distribution<F>,
Auto Trait Implementations
impl<F> RefUnwindSafe for NormalInverseGaussian<F>where
F: RefUnwindSafe,
impl<F> Send for NormalInverseGaussian<F>where
F: Send,
impl<F> Sync for NormalInverseGaussian<F>where
F: Sync,
impl<F> Unpin for NormalInverseGaussian<F>where
F: Unpin,
impl<F> UnwindSafe for NormalInverseGaussian<F>where
F: UnwindSafe,
Blanket Implementations
sourceimpl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more