Struct rand_distr::LogNormal
source · [−]pub struct LogNormal<F>where
F: Float,
StandardNormal: Distribution<F>,{ /* private fields */ }
Expand description
The log-normal distribution ln N(mean, std_dev**2)
.
If X
is log-normal distributed, then ln(X)
is N(mean, std_dev**2)
distributed.
Example
use rand_distr::{LogNormal, Distribution};
// mean 2, standard deviation 3
let log_normal = LogNormal::new(2.0, 3.0).unwrap();
let v = log_normal.sample(&mut rand::thread_rng());
println!("{} is from an ln N(2, 9) distribution", v)
Implementations
sourceimpl<F> LogNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
impl<F> LogNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
sourcepub fn new(mu: F, sigma: F) -> Result<LogNormal<F>, Error>
pub fn new(mu: F, sigma: F) -> Result<LogNormal<F>, Error>
Construct, from (log-space) mean and standard deviation
Parameters are the “standard” log-space measures (these are the mean and standard deviation of the logarithm of samples):
mu
(μ
, unrestricted) is the mean of the underlying distributionsigma
(σ
, must be finite) is the standard deviation of the underlying Normal distribution
sourcepub fn from_mean_cv(mean: F, cv: F) -> Result<LogNormal<F>, Error>
pub fn from_mean_cv(mean: F, cv: F) -> Result<LogNormal<F>, Error>
Construct, from (linear-space) mean and coefficient of variation
Parameters are linear-space measures:
- mean (
μ > 0
) is the (real) mean of the distribution - coefficient of variation (
cv = σ / μ
, requiringcv ≥ 0
) is a standardized measure of dispersion
As a special exception, μ = 0, cv = 0
is allowed (samples are -inf
).
sourcepub fn from_zscore(&self, zscore: F) -> F
pub fn from_zscore(&self, zscore: F) -> F
Sample from a z-score
This may be useful for generating correlated samples x1
and x2
from two different distributions, as follows.
let mut rng = thread_rng();
let z = StandardNormal.sample(&mut rng);
let x1 = LogNormal::from_mean_cv(3.0, 1.0).unwrap().from_zscore(z);
let x2 = LogNormal::from_mean_cv(2.0, 4.0).unwrap().from_zscore(z);
Trait Implementations
sourceimpl<F: Clone> Clone for LogNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
impl<F: Clone> Clone for LogNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
sourceimpl<F: Debug> Debug for LogNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
impl<F: Debug> Debug for LogNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
sourceimpl<F> Distribution<F> for LogNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
impl<F> Distribution<F> for LogNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
sourcefn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F
Generate a random value of
T
, using rng
as the source of randomness.sourcefn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>ⓘNotable traits for DistIter<D, R, T>impl<D, R, T> Iterator for DistIter<D, R, T>where
D: Distribution<T>,
R: Rng, type Item = T;
where
R: Rng,
fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>ⓘNotable traits for DistIter<D, R, T>impl<D, R, T> Iterator for DistIter<D, R, T>where
D: Distribution<T>,
R: Rng, type Item = T;
where
R: Rng,
D: Distribution<T>,
R: Rng, type Item = T;
Create an iterator that generates random values of
T
, using rng
as
the source of randomness. Read moreimpl<F: Copy> Copy for LogNormal<F>where
F: Float,
StandardNormal: Distribution<F>,
Auto Trait Implementations
impl<F> RefUnwindSafe for LogNormal<F>where
F: RefUnwindSafe,
impl<F> Send for LogNormal<F>where
F: Send,
impl<F> Sync for LogNormal<F>where
F: Sync,
impl<F> Unpin for LogNormal<F>where
F: Unpin,
impl<F> UnwindSafe for LogNormal<F>where
F: UnwindSafe,
Blanket Implementations
sourceimpl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more