Struct chrono::naive::NaiveDateTime
source · [−]pub struct NaiveDateTime { /* private fields */ }
Expand description
ISO 8601 combined date and time without timezone.
Example
NaiveDateTime
is commonly created from NaiveDate
.
use chrono::{NaiveDate, NaiveDateTime};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap();
You can use typical date-like and time-like methods, provided that relevant traits are in the scope.
use chrono::{Datelike, Timelike, Weekday};
assert_eq!(dt.weekday(), Weekday::Fri);
assert_eq!(dt.num_seconds_from_midnight(), 33011);
Implementations
sourceimpl NaiveDateTime
impl NaiveDateTime
sourcepub const fn new(date: NaiveDate, time: NaiveTime) -> NaiveDateTime
pub const fn new(date: NaiveDate, time: NaiveTime) -> NaiveDateTime
Makes a new NaiveDateTime
from date and time components.
Equivalent to date.and_time(time)
and many other helper constructors on NaiveDate
.
Example
use chrono::{NaiveDate, NaiveTime, NaiveDateTime};
let d = NaiveDate::from_ymd_opt(2015, 6, 3).unwrap();
let t = NaiveTime::from_hms_milli_opt(12, 34, 56, 789).unwrap();
let dt = NaiveDateTime::new(d, t);
assert_eq!(dt.date(), d);
assert_eq!(dt.time(), t);
sourcepub fn from_timestamp(secs: i64, nsecs: u32) -> NaiveDateTime
👎Deprecated since 0.4.23: use from_timestamp_opt()
instead
pub fn from_timestamp(secs: i64, nsecs: u32) -> NaiveDateTime
from_timestamp_opt()
insteadMakes a new NaiveDateTime
corresponding to a UTC date and time,
from the number of non-leap seconds
since the midnight UTC on January 1, 1970 (aka “UNIX timestamp”)
and the number of nanoseconds since the last whole non-leap second.
For a non-naive version of this function see
TimeZone::timestamp
.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second. (The true “UNIX timestamp” cannot represent a leap second unambiguously.)
Panics on the out-of-range number of seconds and/or invalid nanosecond.
sourcepub fn from_timestamp_millis(millis: i64) -> Option<NaiveDateTime>
pub fn from_timestamp_millis(millis: i64) -> Option<NaiveDateTime>
Creates a new NaiveDateTime from milliseconds since the UNIX epoch.
The UNIX epoch starts on midnight, January 1, 1970, UTC.
Returns None
on an out-of-range number of milliseconds.
Example
use chrono::NaiveDateTime;
let timestamp_millis: i64 = 1662921288000; //Sunday, September 11, 2022 6:34:48 PM
let naive_datetime = NaiveDateTime::from_timestamp_millis(timestamp_millis);
assert!(naive_datetime.is_some());
assert_eq!(timestamp_millis, naive_datetime.unwrap().timestamp_millis());
// Negative timestamps (before the UNIX epoch) are supported as well.
let timestamp_millis: i64 = -2208936075000; //Mon Jan 01 1900 14:38:45 GMT+0000
let naive_datetime = NaiveDateTime::from_timestamp_millis(timestamp_millis);
assert!(naive_datetime.is_some());
assert_eq!(timestamp_millis, naive_datetime.unwrap().timestamp_millis());
sourcepub fn from_timestamp_micros(micros: i64) -> Option<NaiveDateTime>
pub fn from_timestamp_micros(micros: i64) -> Option<NaiveDateTime>
Creates a new NaiveDateTime from microseconds since the UNIX epoch.
The UNIX epoch starts on midnight, January 1, 1970, UTC.
Returns None
on an out-of-range number of microseconds.
Example
use chrono::NaiveDateTime;
let timestamp_micros: i64 = 1662921288000000; //Sunday, September 11, 2022 6:34:48 PM
let naive_datetime = NaiveDateTime::from_timestamp_micros(timestamp_micros);
assert!(naive_datetime.is_some());
assert_eq!(timestamp_micros, naive_datetime.unwrap().timestamp_micros());
// Negative timestamps (before the UNIX epoch) are supported as well.
let timestamp_micros: i64 = -2208936075000000; //Mon Jan 01 1900 14:38:45 GMT+0000
let naive_datetime = NaiveDateTime::from_timestamp_micros(timestamp_micros);
assert!(naive_datetime.is_some());
assert_eq!(timestamp_micros, naive_datetime.unwrap().timestamp_micros());
sourcepub fn from_timestamp_opt(secs: i64, nsecs: u32) -> Option<NaiveDateTime>
pub fn from_timestamp_opt(secs: i64, nsecs: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
corresponding to a UTC date and time,
from the number of non-leap seconds
since the midnight UTC on January 1, 1970 (aka “UNIX timestamp”)
and the number of nanoseconds since the last whole non-leap second.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second. (The true “UNIX timestamp” cannot represent a leap second unambiguously.)
Returns None
on the out-of-range number of seconds (more than 262 000 years away
from common era) and/or invalid nanosecond (2 seconds or more).
Example
use chrono::NaiveDateTime;
use std::i64;
let from_timestamp_opt = NaiveDateTime::from_timestamp_opt;
assert!(from_timestamp_opt(0, 0).is_some());
assert!(from_timestamp_opt(0, 999_999_999).is_some());
assert!(from_timestamp_opt(0, 1_500_000_000).is_some()); // leap second
assert!(from_timestamp_opt(0, 2_000_000_000).is_none());
assert!(from_timestamp_opt(i64::MAX, 0).is_none());
sourcepub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveDateTime>
pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveDateTime>
Parses a string with the specified format string and returns a new NaiveDateTime
.
See the format::strftime
module
on the supported escape sequences.
Example
use chrono::{NaiveDateTime, NaiveDate};
let parse_from_str = NaiveDateTime::parse_from_str;
assert_eq!(parse_from_str("2015-09-05 23:56:04", "%Y-%m-%d %H:%M:%S"),
Ok(NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap()));
assert_eq!(parse_from_str("5sep2015pm012345.6789", "%d%b%Y%p%I%M%S%.f"),
Ok(NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_micro_opt(13, 23, 45, 678_900).unwrap()));
Offset is ignored for the purpose of parsing.
assert_eq!(parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"),
Ok(NaiveDate::from_ymd_opt(2014, 5, 17).unwrap().and_hms_opt(12, 34, 56).unwrap()));
Leap seconds are correctly handled by
treating any time of the form hh:mm:60
as a leap second.
(This equally applies to the formatting, so the round trip is possible.)
assert_eq!(parse_from_str("2015-07-01 08:59:60.123", "%Y-%m-%d %H:%M:%S%.f"),
Ok(NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_milli_opt(8, 59, 59, 1_123).unwrap()));
Missing seconds are assumed to be zero, but out-of-bound times or insufficient fields are errors otherwise.
assert_eq!(parse_from_str("94/9/4 7:15", "%y/%m/%d %H:%M"),
Ok(NaiveDate::from_ymd_opt(1994, 9, 4).unwrap().and_hms_opt(7, 15, 0).unwrap()));
assert!(parse_from_str("04m33s", "%Mm%Ss").is_err());
assert!(parse_from_str("94/9/4 12", "%y/%m/%d %H").is_err());
assert!(parse_from_str("94/9/4 17:60", "%y/%m/%d %H:%M").is_err());
assert!(parse_from_str("94/9/4 24:00:00", "%y/%m/%d %H:%M:%S").is_err());
All parsed fields should be consistent to each other, otherwise it’s an error.
let fmt = "%Y-%m-%d %H:%M:%S = UNIX timestamp %s";
assert!(parse_from_str("2001-09-09 01:46:39 = UNIX timestamp 999999999", fmt).is_ok());
assert!(parse_from_str("1970-01-01 00:00:00 = UNIX timestamp 1", fmt).is_err());
Years before 1 BCE or after 9999 CE, require an initial sign
let fmt = "%Y-%m-%d %H:%M:%S";
assert!(parse_from_str("10000-09-09 01:46:39", fmt).is_err());
assert!(parse_from_str("+10000-09-09 01:46:39", fmt).is_ok());
sourcepub fn parse_and_remainder<'a>(
s: &'a str,
fmt: &str
) -> ParseResult<(NaiveDateTime, &'a str)>
pub fn parse_and_remainder<'a>(
s: &'a str,
fmt: &str
) -> ParseResult<(NaiveDateTime, &'a str)>
Parses a string with the specified format string and returns a new NaiveDateTime
, and a
slice with the remaining portion of the string.
See the format::strftime
module
on the supported escape sequences.
Similar to parse_from_str
.
Example
let (datetime, remainder) = NaiveDateTime::parse_and_remainder(
"2015-02-18 23:16:09 trailing text", "%Y-%m-%d %H:%M:%S").unwrap();
assert_eq!(
datetime,
NaiveDate::from_ymd_opt(2015, 2, 18).unwrap().and_hms_opt(23, 16, 9).unwrap()
);
assert_eq!(remainder, " trailing text");
sourcepub const fn date(&self) -> NaiveDate
pub const fn date(&self) -> NaiveDate
Retrieves a date component.
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap();
assert_eq!(dt.date(), NaiveDate::from_ymd_opt(2016, 7, 8).unwrap());
sourcepub const fn time(&self) -> NaiveTime
pub const fn time(&self) -> NaiveTime
Retrieves a time component.
Example
use chrono::{NaiveDate, NaiveTime};
let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap();
assert_eq!(dt.time(), NaiveTime::from_hms_opt(9, 10, 11).unwrap());
sourcepub fn timestamp(&self) -> i64
pub fn timestamp(&self) -> i64
Returns the number of non-leap seconds since the midnight on January 1, 1970.
Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_milli_opt(0, 0, 1, 980).unwrap();
assert_eq!(dt.timestamp(), 1);
let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_opt(1, 46, 40).unwrap();
assert_eq!(dt.timestamp(), 1_000_000_000);
let dt = NaiveDate::from_ymd_opt(1969, 12, 31).unwrap().and_hms_opt(23, 59, 59).unwrap();
assert_eq!(dt.timestamp(), -1);
let dt = NaiveDate::from_ymd_opt(-1, 1, 1).unwrap().and_hms_opt(0, 0, 0).unwrap();
assert_eq!(dt.timestamp(), -62198755200);
sourcepub fn timestamp_millis(&self) -> i64
pub fn timestamp_millis(&self) -> i64
Returns the number of non-leap milliseconds since midnight on January 1, 1970.
Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.
Note also that this does reduce the number of years that can be represented from ~584 Billion to ~584 Million. (If this is a problem, please file an issue to let me know what domain needs millisecond precision over billions of years, I’m curious.)
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_milli_opt(0, 0, 1, 444).unwrap();
assert_eq!(dt.timestamp_millis(), 1_444);
let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_milli_opt(1, 46, 40, 555).unwrap();
assert_eq!(dt.timestamp_millis(), 1_000_000_000_555);
let dt = NaiveDate::from_ymd_opt(1969, 12, 31).unwrap().and_hms_milli_opt(23, 59, 59, 100).unwrap();
assert_eq!(dt.timestamp_millis(), -900);
sourcepub fn timestamp_micros(&self) -> i64
pub fn timestamp_micros(&self) -> i64
Returns the number of non-leap microseconds since midnight on January 1, 1970.
Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.
Note also that this does reduce the number of years that can be represented from ~584 Billion to ~584 Thousand. (If this is a problem, please file an issue to let me know what domain needs microsecond precision over millennia, I’m curious.)
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_micro_opt(0, 0, 1, 444).unwrap();
assert_eq!(dt.timestamp_micros(), 1_000_444);
let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_micro_opt(1, 46, 40, 555).unwrap();
assert_eq!(dt.timestamp_micros(), 1_000_000_000_000_555);
sourcepub fn timestamp_nanos(&self) -> i64
pub fn timestamp_nanos(&self) -> i64
Returns the number of non-leap nanoseconds since midnight on January 1, 1970.
Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.
Panics
Note also that this does reduce the number of years that can be represented from ~584 Billion to ~584 years. The dates that can be represented as nanoseconds are between 1677-09-21T00:12:44.0 and 2262-04-11T23:47:16.854775804.
(If this is a problem, please file an issue to let me know what domain needs nanosecond precision over millennia, I’m curious.)
Example
use chrono::{NaiveDate, NaiveDateTime};
let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_nano_opt(0, 0, 1, 444).unwrap();
assert_eq!(dt.timestamp_nanos(), 1_000_000_444);
let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_nano_opt(1, 46, 40, 555).unwrap();
const A_BILLION: i64 = 1_000_000_000;
let nanos = dt.timestamp_nanos();
assert_eq!(nanos, 1_000_000_000_000_000_555);
assert_eq!(
Some(dt),
NaiveDateTime::from_timestamp_opt(nanos / A_BILLION, (nanos % A_BILLION) as u32)
);
sourcepub fn timestamp_subsec_millis(&self) -> u32
pub fn timestamp_subsec_millis(&self) -> u32
Returns the number of milliseconds since the last whole non-leap second.
The return value ranges from 0 to 999, or for leap seconds, to 1,999.
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_nano_opt(9, 10, 11, 123_456_789).unwrap();
assert_eq!(dt.timestamp_subsec_millis(), 123);
let dt = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_nano_opt(8, 59, 59, 1_234_567_890).unwrap();
assert_eq!(dt.timestamp_subsec_millis(), 1_234);
sourcepub fn timestamp_subsec_micros(&self) -> u32
pub fn timestamp_subsec_micros(&self) -> u32
Returns the number of microseconds since the last whole non-leap second.
The return value ranges from 0 to 999,999, or for leap seconds, to 1,999,999.
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_nano_opt(9, 10, 11, 123_456_789).unwrap();
assert_eq!(dt.timestamp_subsec_micros(), 123_456);
let dt = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_nano_opt(8, 59, 59, 1_234_567_890).unwrap();
assert_eq!(dt.timestamp_subsec_micros(), 1_234_567);
sourcepub fn timestamp_subsec_nanos(&self) -> u32
pub fn timestamp_subsec_nanos(&self) -> u32
Returns the number of nanoseconds since the last whole non-leap second.
The return value ranges from 0 to 999,999,999, or for leap seconds, to 1,999,999,999.
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_nano_opt(9, 10, 11, 123_456_789).unwrap();
assert_eq!(dt.timestamp_subsec_nanos(), 123_456_789);
let dt = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_nano_opt(8, 59, 59, 1_234_567_890).unwrap();
assert_eq!(dt.timestamp_subsec_nanos(), 1_234_567_890);
sourcepub fn checked_add_signed(self, rhs: OldDuration) -> Option<NaiveDateTime>
pub fn checked_add_signed(self, rhs: OldDuration) -> Option<NaiveDateTime>
Adds given Duration
to the current date and time.
As a part of Chrono’s leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Returns None
when it will result in overflow.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap();
let d = from_ymd(2016, 7, 8);
let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap();
assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::zero()),
Some(hms(3, 5, 7)));
assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(1)),
Some(hms(3, 5, 8)));
assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(-1)),
Some(hms(3, 5, 6)));
assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(3600 + 60)),
Some(hms(4, 6, 7)));
assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(86_400)),
Some(from_ymd(2016, 7, 9).and_hms_opt(3, 5, 7).unwrap()));
let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap();
assert_eq!(hmsm(3, 5, 7, 980).checked_add_signed(Duration::milliseconds(450)),
Some(hmsm(3, 5, 8, 430)));
Overflow returns None
.
assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::days(1_000_000_000)), None);
Leap seconds are handled, but the addition assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300);
assert_eq!(leap.checked_add_signed(Duration::zero()),
Some(hmsm(3, 5, 59, 1_300)));
assert_eq!(leap.checked_add_signed(Duration::milliseconds(-500)),
Some(hmsm(3, 5, 59, 800)));
assert_eq!(leap.checked_add_signed(Duration::milliseconds(500)),
Some(hmsm(3, 5, 59, 1_800)));
assert_eq!(leap.checked_add_signed(Duration::milliseconds(800)),
Some(hmsm(3, 6, 0, 100)));
assert_eq!(leap.checked_add_signed(Duration::seconds(10)),
Some(hmsm(3, 6, 9, 300)));
assert_eq!(leap.checked_add_signed(Duration::seconds(-10)),
Some(hmsm(3, 5, 50, 300)));
assert_eq!(leap.checked_add_signed(Duration::days(1)),
Some(from_ymd(2016, 7, 9).and_hms_milli_opt(3, 5, 59, 300).unwrap()));
sourcepub fn checked_add_months(self, rhs: Months) -> Option<NaiveDateTime>
pub fn checked_add_months(self, rhs: Months) -> Option<NaiveDateTime>
Adds given Months
to the current date and time.
Returns None
when it will result in overflow.
Overflow returns None
.
Example
use chrono::{Months, NaiveDate};
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(1, 0, 0).unwrap()
.checked_add_months(Months::new(1)),
Some(NaiveDate::from_ymd_opt(2014, 2, 1).unwrap().and_hms_opt(1, 0, 0).unwrap())
);
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(1, 0, 0).unwrap()
.checked_add_months(Months::new(core::i32::MAX as u32 + 1)),
None
);
sourcepub fn checked_sub_signed(self, rhs: OldDuration) -> Option<NaiveDateTime>
pub fn checked_sub_signed(self, rhs: OldDuration) -> Option<NaiveDateTime>
Subtracts given Duration
from the current date and time.
As a part of Chrono’s leap second handling,
the subtraction assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Returns None
when it will result in overflow.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap();
let d = from_ymd(2016, 7, 8);
let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap();
assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::zero()),
Some(hms(3, 5, 7)));
assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(1)),
Some(hms(3, 5, 6)));
assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(-1)),
Some(hms(3, 5, 8)));
assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(3600 + 60)),
Some(hms(2, 4, 7)));
assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(86_400)),
Some(from_ymd(2016, 7, 7).and_hms_opt(3, 5, 7).unwrap()));
let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap();
assert_eq!(hmsm(3, 5, 7, 450).checked_sub_signed(Duration::milliseconds(670)),
Some(hmsm(3, 5, 6, 780)));
Overflow returns None
.
assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::days(1_000_000_000)), None);
Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300);
assert_eq!(leap.checked_sub_signed(Duration::zero()),
Some(hmsm(3, 5, 59, 1_300)));
assert_eq!(leap.checked_sub_signed(Duration::milliseconds(200)),
Some(hmsm(3, 5, 59, 1_100)));
assert_eq!(leap.checked_sub_signed(Duration::milliseconds(500)),
Some(hmsm(3, 5, 59, 800)));
assert_eq!(leap.checked_sub_signed(Duration::seconds(60)),
Some(hmsm(3, 5, 0, 300)));
assert_eq!(leap.checked_sub_signed(Duration::days(1)),
Some(from_ymd(2016, 7, 7).and_hms_milli_opt(3, 6, 0, 300).unwrap()));
sourcepub fn checked_sub_months(self, rhs: Months) -> Option<NaiveDateTime>
pub fn checked_sub_months(self, rhs: Months) -> Option<NaiveDateTime>
Subtracts given Months
from the current date and time.
Returns None
when it will result in overflow.
Overflow returns None
.
Example
use chrono::{Months, NaiveDate};
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(1, 0, 0).unwrap()
.checked_sub_months(Months::new(1)),
Some(NaiveDate::from_ymd_opt(2013, 12, 1).unwrap().and_hms_opt(1, 0, 0).unwrap())
);
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(1, 0, 0).unwrap()
.checked_sub_months(Months::new(core::i32::MAX as u32 + 1)),
None
);
sourcepub fn checked_add_days(self, days: Days) -> Option<Self>
pub fn checked_add_days(self, days: Days) -> Option<Self>
Add a duration in Days
to the date part of the NaiveDateTime
Returns None
if the resulting date would be out of range.
sourcepub fn checked_sub_days(self, days: Days) -> Option<Self>
pub fn checked_sub_days(self, days: Days) -> Option<Self>
Subtract a duration in Days
from the date part of the NaiveDateTime
Returns None
if the resulting date would be out of range.
sourcepub fn signed_duration_since(self, rhs: NaiveDateTime) -> OldDuration
pub fn signed_duration_since(self, rhs: NaiveDateTime) -> OldDuration
Subtracts another NaiveDateTime
from the current date and time.
This does not overflow or underflow at all.
As a part of Chrono’s leap second handling,
the subtraction assumes that there is no leap second ever,
except when any of the NaiveDateTime
s themselves represents a leap second
in which case the assumption becomes that
there are exactly one (or two) leap second(s) ever.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap();
let d = from_ymd(2016, 7, 8);
assert_eq!(d.and_hms_opt(3, 5, 7).unwrap().signed_duration_since(d.and_hms_opt(2, 4, 6).unwrap()),
Duration::seconds(3600 + 60 + 1));
// July 8 is 190th day in the year 2016
let d0 = from_ymd(2016, 1, 1);
assert_eq!(d.and_hms_milli_opt(0, 7, 6, 500).unwrap().signed_duration_since(d0.and_hms_opt(0, 0, 0).unwrap()),
Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500));
Leap seconds are handled, but the subtraction assumes that there were no other leap seconds happened.
let leap = from_ymd(2015, 6, 30).and_hms_milli_opt(23, 59, 59, 1_500).unwrap();
assert_eq!(leap.signed_duration_since(from_ymd(2015, 6, 30).and_hms_opt(23, 0, 0).unwrap()),
Duration::seconds(3600) + Duration::milliseconds(500));
assert_eq!(from_ymd(2015, 7, 1).and_hms_opt(1, 0, 0).unwrap().signed_duration_since(leap),
Duration::seconds(3600) - Duration::milliseconds(500));
sourcepub fn and_local_timezone<Tz: TimeZone>(
&self,
tz: Tz
) -> LocalResult<DateTime<Tz>>
pub fn and_local_timezone<Tz: TimeZone>(
&self,
tz: Tz
) -> LocalResult<DateTime<Tz>>
Converts the NaiveDateTime
into the timezone-aware DateTime<Tz>
with the provided timezone, if possible.
This can fail in cases where the local time represented by the NaiveDateTime
is not a valid local timestamp in the target timezone due to an offset transition
for example if the target timezone had a change from +00:00 to +01:00
occuring at 2015-09-05 22:59:59, then a local time of 2015-09-05 23:56:04
could never occur. Similarly, if the offset transitioned in the opposite direction
then there would be two local times of 2015-09-05 23:56:04, one at +00:00 and one
at +01:00.
Example
use chrono::{NaiveDate, FixedOffset};
let hour = 3600;
let tz = FixedOffset::east_opt(5 * hour).unwrap();
let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap().and_local_timezone(tz).unwrap();
assert_eq!(dt.timezone(), tz);
Trait Implementations
sourceimpl Add<Days> for NaiveDateTime
impl Add<Days> for NaiveDateTime
sourceimpl Add<Duration> for NaiveDateTime
impl Add<Duration> for NaiveDateTime
An addition of Duration
to NaiveDateTime
yields another NaiveDateTime
.
As a part of Chrono’s leap second handling, the addition assumes that there is no leap
second ever, except when the NaiveDateTime
itself represents a leap second in which case
the assumption becomes that there is exactly a single leap second ever.
Panics on underflow or overflow. Use NaiveDateTime::checked_add_signed
to detect that.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap();
let d = from_ymd(2016, 7, 8);
let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap();
assert_eq!(hms(3, 5, 7) + Duration::zero(), hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) + Duration::seconds(1), hms(3, 5, 8));
assert_eq!(hms(3, 5, 7) + Duration::seconds(-1), hms(3, 5, 6));
assert_eq!(hms(3, 5, 7) + Duration::seconds(3600 + 60), hms(4, 6, 7));
assert_eq!(hms(3, 5, 7) + Duration::seconds(86_400),
from_ymd(2016, 7, 9).and_hms_opt(3, 5, 7).unwrap());
assert_eq!(hms(3, 5, 7) + Duration::days(365),
from_ymd(2017, 7, 8).and_hms_opt(3, 5, 7).unwrap());
let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap();
assert_eq!(hmsm(3, 5, 7, 980) + Duration::milliseconds(450), hmsm(3, 5, 8, 430));
Leap seconds are handled, but the addition assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300);
assert_eq!(leap + Duration::zero(), hmsm(3, 5, 59, 1_300));
assert_eq!(leap + Duration::milliseconds(-500), hmsm(3, 5, 59, 800));
assert_eq!(leap + Duration::milliseconds(500), hmsm(3, 5, 59, 1_800));
assert_eq!(leap + Duration::milliseconds(800), hmsm(3, 6, 0, 100));
assert_eq!(leap + Duration::seconds(10), hmsm(3, 6, 9, 300));
assert_eq!(leap + Duration::seconds(-10), hmsm(3, 5, 50, 300));
assert_eq!(leap + Duration::days(1),
from_ymd(2016, 7, 9).and_hms_milli_opt(3, 5, 59, 300).unwrap());
type Output = NaiveDateTime
type Output = NaiveDateTime
+
operator.sourcefn add(self, rhs: OldDuration) -> NaiveDateTime
fn add(self, rhs: OldDuration) -> NaiveDateTime
+
operation. Read moresourceimpl Add<FixedOffset> for NaiveDateTime
impl Add<FixedOffset> for NaiveDateTime
type Output = NaiveDateTime
type Output = NaiveDateTime
+
operator.sourcefn add(self, rhs: FixedOffset) -> NaiveDateTime
fn add(self, rhs: FixedOffset) -> NaiveDateTime
+
operation. Read moresourceimpl Add<Months> for NaiveDateTime
impl Add<Months> for NaiveDateTime
sourcefn add(self, rhs: Months) -> Self::Output
fn add(self, rhs: Months) -> Self::Output
An addition of months to NaiveDateTime
clamped to valid days in resulting month.
Panics
Panics if the resulting date would be out of range.
Example
use chrono::{Months, NaiveDate};
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(1, 0, 0).unwrap() + Months::new(1),
NaiveDate::from_ymd_opt(2014, 2, 1).unwrap().and_hms_opt(1, 0, 0).unwrap()
);
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(0, 2, 0).unwrap() + Months::new(11),
NaiveDate::from_ymd_opt(2014, 12, 1).unwrap().and_hms_opt(0, 2, 0).unwrap()
);
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(0, 0, 3).unwrap() + Months::new(12),
NaiveDate::from_ymd_opt(2015, 1, 1).unwrap().and_hms_opt(0, 0, 3).unwrap()
);
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(0, 0, 4).unwrap() + Months::new(13),
NaiveDate::from_ymd_opt(2015, 2, 1).unwrap().and_hms_opt(0, 0, 4).unwrap()
);
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 31).unwrap().and_hms_opt(0, 5, 0).unwrap() + Months::new(1),
NaiveDate::from_ymd_opt(2014, 2, 28).unwrap().and_hms_opt(0, 5, 0).unwrap()
);
assert_eq!(
NaiveDate::from_ymd_opt(2020, 1, 31).unwrap().and_hms_opt(6, 0, 0).unwrap() + Months::new(1),
NaiveDate::from_ymd_opt(2020, 2, 29).unwrap().and_hms_opt(6, 0, 0).unwrap()
);
type Output = NaiveDateTime
type Output = NaiveDateTime
+
operator.sourceimpl AddAssign<Duration> for NaiveDateTime
impl AddAssign<Duration> for NaiveDateTime
sourcefn add_assign(&mut self, rhs: OldDuration)
fn add_assign(&mut self, rhs: OldDuration)
+=
operation. Read moresourceimpl Clone for NaiveDateTime
impl Clone for NaiveDateTime
sourcefn clone(&self) -> NaiveDateTime
fn clone(&self) -> NaiveDateTime
1.0.0 · sourceconst fn clone_from(&mut self, source: &Self)
const fn clone_from(&mut self, source: &Self)
source
. Read moresourceimpl Datelike for NaiveDateTime
impl Datelike for NaiveDateTime
sourcefn year(&self) -> i32
fn year(&self) -> i32
Returns the year number in the calendar date.
See also the NaiveDate::year
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.year(), 2015);
sourcefn month(&self) -> u32
fn month(&self) -> u32
Returns the month number starting from 1.
The return value ranges from 1 to 12.
See also the NaiveDate::month
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.month(), 9);
sourcefn month0(&self) -> u32
fn month0(&self) -> u32
Returns the month number starting from 0.
The return value ranges from 0 to 11.
See also the NaiveDate::month0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.month0(), 8);
sourcefn day(&self) -> u32
fn day(&self) -> u32
Returns the day of month starting from 1.
The return value ranges from 1 to 31. (The last day of month differs by months.)
See also the NaiveDate::day
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.day(), 25);
sourcefn day0(&self) -> u32
fn day0(&self) -> u32
Returns the day of month starting from 0.
The return value ranges from 0 to 30. (The last day of month differs by months.)
See also the NaiveDate::day0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.day0(), 24);
sourcefn ordinal(&self) -> u32
fn ordinal(&self) -> u32
Returns the day of year starting from 1.
The return value ranges from 1 to 366. (The last day of year differs by years.)
See also the NaiveDate::ordinal
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.ordinal(), 268);
sourcefn ordinal0(&self) -> u32
fn ordinal0(&self) -> u32
Returns the day of year starting from 0.
The return value ranges from 0 to 365. (The last day of year differs by years.)
See also the NaiveDate::ordinal0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.ordinal0(), 267);
sourcefn weekday(&self) -> Weekday
fn weekday(&self) -> Weekday
Returns the day of week.
See also the NaiveDate::weekday
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike, Weekday};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.weekday(), Weekday::Fri);
sourcefn with_year(&self, year: i32) -> Option<NaiveDateTime>
fn with_year(&self, year: i32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the year number changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the NaiveDate::with_year
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_year(2016), Some(NaiveDate::from_ymd_opt(2016, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_year(-308), Some(NaiveDate::from_ymd_opt(-308, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap()));
sourcefn with_month(&self, month: u32) -> Option<NaiveDateTime>
fn with_month(&self, month: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the month number (starting from 1) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the NaiveDate::with_month
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_month(10), Some(NaiveDate::from_ymd_opt(2015, 10, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_month(13), None); // no month 13
assert_eq!(dt.with_month(2), None); // no February 30
sourcefn with_month0(&self, month0: u32) -> Option<NaiveDateTime>
fn with_month0(&self, month0: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the month number (starting from 0) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the NaiveDate::with_month0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_month0(9), Some(NaiveDate::from_ymd_opt(2015, 10, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_month0(12), None); // no month 13
assert_eq!(dt.with_month0(1), None); // no February 30
sourcefn with_day(&self, day: u32) -> Option<NaiveDateTime>
fn with_day(&self, day: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the day of month (starting from 1) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the NaiveDate::with_day
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_day(30), Some(NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_day(31), None); // no September 31
sourcefn with_day0(&self, day0: u32) -> Option<NaiveDateTime>
fn with_day0(&self, day0: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the day of month (starting from 0) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the NaiveDate::with_day0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_day0(29), Some(NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_day0(30), None); // no September 31
sourcefn with_ordinal(&self, ordinal: u32) -> Option<NaiveDateTime>
fn with_ordinal(&self, ordinal: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the day of year (starting from 1) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the NaiveDate::with_ordinal
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_ordinal(60),
Some(NaiveDate::from_ymd_opt(2015, 3, 1).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_ordinal(366), None); // 2015 had only 365 days
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2016, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_ordinal(60),
Some(NaiveDate::from_ymd_opt(2016, 2, 29).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_ordinal(366),
Some(NaiveDate::from_ymd_opt(2016, 12, 31).unwrap().and_hms_opt(12, 34, 56).unwrap()));
sourcefn with_ordinal0(&self, ordinal0: u32) -> Option<NaiveDateTime>
fn with_ordinal0(&self, ordinal0: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the day of year (starting from 0) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the NaiveDate::with_ordinal0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_ordinal0(59),
Some(NaiveDate::from_ymd_opt(2015, 3, 1).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_ordinal0(365), None); // 2015 had only 365 days
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2016, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_ordinal0(59),
Some(NaiveDate::from_ymd_opt(2016, 2, 29).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_ordinal0(365),
Some(NaiveDate::from_ymd_opt(2016, 12, 31).unwrap().and_hms_opt(12, 34, 56).unwrap()));
sourcefn year_ce(&self) -> (bool, u32)
fn year_ce(&self) -> (bool, u32)
sourcefn num_days_from_ce(&self) -> i32
fn num_days_from_ce(&self) -> i32
sourceimpl Debug for NaiveDateTime
impl Debug for NaiveDateTime
The Debug
output of the naive date and time dt
is the same as
dt.format("%Y-%m-%dT%H:%M:%S%.f")
.
The string printed can be readily parsed via the parse
method on str
.
It should be noted that, for leap seconds not on the minute boundary, it may print a representation not distinguishable from non-leap seconds. This doesn’t matter in practice, since such leap seconds never happened. (By the time of the first leap second on 1972-06-30, every time zone offset around the world has standardized to the 5-minute alignment.)
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(2016, 11, 15).unwrap().and_hms_opt(7, 39, 24).unwrap();
assert_eq!(format!("{:?}", dt), "2016-11-15T07:39:24");
Leap seconds may also be used.
let dt = NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_500).unwrap();
assert_eq!(format!("{:?}", dt), "2015-06-30T23:59:60.500");
sourceimpl Default for NaiveDateTime
impl Default for NaiveDateTime
The default value for a NaiveDateTime is one with epoch 0 that is, 1st of January 1970 at 00:00:00.
Example
use chrono::NaiveDateTime;
let default_date = NaiveDateTime::default();
assert_eq!(Some(default_date), NaiveDateTime::from_timestamp_opt(0, 0));
sourceimpl Display for NaiveDateTime
impl Display for NaiveDateTime
The Display
output of the naive date and time dt
is the same as
dt.format("%Y-%m-%d %H:%M:%S%.f")
.
It should be noted that, for leap seconds not on the minute boundary, it may print a representation not distinguishable from non-leap seconds. This doesn’t matter in practice, since such leap seconds never happened. (By the time of the first leap second on 1972-06-30, every time zone offset around the world has standardized to the 5-minute alignment.)
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(2016, 11, 15).unwrap().and_hms_opt(7, 39, 24).unwrap();
assert_eq!(format!("{}", dt), "2016-11-15 07:39:24");
Leap seconds may also be used.
let dt = NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_500).unwrap();
assert_eq!(format!("{}", dt), "2015-06-30 23:59:60.500");
sourceimpl DurationRound for NaiveDateTime
impl DurationRound for NaiveDateTime
type Err = RoundingError
type Err = RoundingError
sourceimpl From<NaiveDateTime> for NaiveDate
impl From<NaiveDateTime> for NaiveDate
sourcefn from(naive_datetime: NaiveDateTime) -> Self
fn from(naive_datetime: NaiveDateTime) -> Self
sourceimpl FromStr for NaiveDateTime
impl FromStr for NaiveDateTime
Parsing a str
into a NaiveDateTime
uses the same format,
%Y-%m-%dT%H:%M:%S%.f
, as in Debug
.
Example
use chrono::{NaiveDateTime, NaiveDate};
let dt = NaiveDate::from_ymd_opt(2015, 9, 18).unwrap().and_hms_opt(23, 56, 4).unwrap();
assert_eq!("2015-09-18T23:56:04".parse::<NaiveDateTime>(), Ok(dt));
let dt = NaiveDate::from_ymd_opt(12345, 6, 7).unwrap().and_hms_milli_opt(7, 59, 59, 1_500).unwrap(); // leap second
assert_eq!("+12345-6-7T7:59:60.5".parse::<NaiveDateTime>(), Ok(dt));
assert!("foo".parse::<NaiveDateTime>().is_err());
type Err = ParseError
type Err = ParseError
sourcefn from_str(s: &str) -> ParseResult<NaiveDateTime>
fn from_str(s: &str) -> ParseResult<NaiveDateTime>
s
to return a value of this type. Read moresourceimpl Hash for NaiveDateTime
impl Hash for NaiveDateTime
sourceimpl Ord for NaiveDateTime
impl Ord for NaiveDateTime
sourcefn cmp(&self, other: &NaiveDateTime) -> Ordering
fn cmp(&self, other: &NaiveDateTime) -> Ordering
1.21.0 · sourceconst fn max(self, other: Self) -> Self
const fn max(self, other: Self) -> Self
1.21.0 · sourceconst fn min(self, other: Self) -> Self
const fn min(self, other: Self) -> Self
1.50.0 · sourceconst fn clamp(self, min: Self, max: Self) -> Selfwhere
Self: PartialOrd<Self>,
const fn clamp(self, min: Self, max: Self) -> Selfwhere
Self: PartialOrd<Self>,
sourceimpl PartialEq<NaiveDateTime> for NaiveDateTime
impl PartialEq<NaiveDateTime> for NaiveDateTime
sourcefn eq(&self, other: &NaiveDateTime) -> bool
fn eq(&self, other: &NaiveDateTime) -> bool
sourceimpl PartialOrd<NaiveDateTime> for NaiveDateTime
impl PartialOrd<NaiveDateTime> for NaiveDateTime
sourcefn partial_cmp(&self, other: &NaiveDateTime) -> Option<Ordering>
fn partial_cmp(&self, other: &NaiveDateTime) -> Option<Ordering>
1.0.0 · sourceconst fn le(&self, other: &Rhs) -> bool
const fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moresourceimpl Sub<Days> for NaiveDateTime
impl Sub<Days> for NaiveDateTime
sourceimpl Sub<Duration> for NaiveDateTime
impl Sub<Duration> for NaiveDateTime
A subtraction of Duration
from NaiveDateTime
yields another NaiveDateTime
.
It is the same as the addition with a negated Duration
.
As a part of Chrono’s leap second handling the subtraction assumes that there is no leap
second ever, except when the NaiveDateTime
itself represents a leap second in which case
the assumption becomes that there is exactly a single leap second ever.
Panics on underflow or overflow. Use NaiveDateTime::checked_sub_signed
to detect that.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap();
let d = from_ymd(2016, 7, 8);
let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap();
assert_eq!(hms(3, 5, 7) - Duration::zero(), hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) - Duration::seconds(1), hms(3, 5, 6));
assert_eq!(hms(3, 5, 7) - Duration::seconds(-1), hms(3, 5, 8));
assert_eq!(hms(3, 5, 7) - Duration::seconds(3600 + 60), hms(2, 4, 7));
assert_eq!(hms(3, 5, 7) - Duration::seconds(86_400),
from_ymd(2016, 7, 7).and_hms_opt(3, 5, 7).unwrap());
assert_eq!(hms(3, 5, 7) - Duration::days(365),
from_ymd(2015, 7, 9).and_hms_opt(3, 5, 7).unwrap());
let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap();
assert_eq!(hmsm(3, 5, 7, 450) - Duration::milliseconds(670), hmsm(3, 5, 6, 780));
Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300);
assert_eq!(leap - Duration::zero(), hmsm(3, 5, 59, 1_300));
assert_eq!(leap - Duration::milliseconds(200), hmsm(3, 5, 59, 1_100));
assert_eq!(leap - Duration::milliseconds(500), hmsm(3, 5, 59, 800));
assert_eq!(leap - Duration::seconds(60), hmsm(3, 5, 0, 300));
assert_eq!(leap - Duration::days(1),
from_ymd(2016, 7, 7).and_hms_milli_opt(3, 6, 0, 300).unwrap());
type Output = NaiveDateTime
type Output = NaiveDateTime
-
operator.sourcefn sub(self, rhs: OldDuration) -> NaiveDateTime
fn sub(self, rhs: OldDuration) -> NaiveDateTime
-
operation. Read moresourceimpl Sub<FixedOffset> for NaiveDateTime
impl Sub<FixedOffset> for NaiveDateTime
type Output = NaiveDateTime
type Output = NaiveDateTime
-
operator.sourcefn sub(self, rhs: FixedOffset) -> NaiveDateTime
fn sub(self, rhs: FixedOffset) -> NaiveDateTime
-
operation. Read moresourceimpl Sub<Months> for NaiveDateTime
impl Sub<Months> for NaiveDateTime
A subtraction of Months from NaiveDateTime
clamped to valid days in resulting month.
Panics
Panics if the resulting date would be out of range.
Example
use chrono::{Months, NaiveDate};
assert_eq!(
NaiveDate::from_ymd_opt(2014, 01, 01).unwrap().and_hms_opt(01, 00, 00).unwrap() - Months::new(11),
NaiveDate::from_ymd_opt(2013, 02, 01).unwrap().and_hms_opt(01, 00, 00).unwrap()
);
assert_eq!(
NaiveDate::from_ymd_opt(2014, 01, 01).unwrap().and_hms_opt(00, 02, 00).unwrap() - Months::new(12),
NaiveDate::from_ymd_opt(2013, 01, 01).unwrap().and_hms_opt(00, 02, 00).unwrap()
);
assert_eq!(
NaiveDate::from_ymd_opt(2014, 01, 01).unwrap().and_hms_opt(00, 00, 03).unwrap() - Months::new(13),
NaiveDate::from_ymd_opt(2012, 12, 01).unwrap().and_hms_opt(00, 00, 03).unwrap()
);
sourceimpl Sub<NaiveDateTime> for NaiveDateTime
impl Sub<NaiveDateTime> for NaiveDateTime
Subtracts another NaiveDateTime
from the current date and time.
This does not overflow or underflow at all.
As a part of Chrono’s leap second handling,
the subtraction assumes that there is no leap second ever,
except when any of the NaiveDateTime
s themselves represents a leap second
in which case the assumption becomes that
there are exactly one (or two) leap second(s) ever.
The implementation is a wrapper around NaiveDateTime::signed_duration_since
.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap();
let d = from_ymd(2016, 7, 8);
assert_eq!(d.and_hms_opt(3, 5, 7).unwrap() - d.and_hms_opt(2, 4, 6).unwrap(), Duration::seconds(3600 + 60 + 1));
// July 8 is 190th day in the year 2016
let d0 = from_ymd(2016, 1, 1);
assert_eq!(d.and_hms_milli_opt(0, 7, 6, 500).unwrap() - d0.and_hms_opt(0, 0, 0).unwrap(),
Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500));
Leap seconds are handled, but the subtraction assumes that no other leap seconds happened.
let leap = from_ymd(2015, 6, 30).and_hms_milli_opt(23, 59, 59, 1_500).unwrap();
assert_eq!(leap - from_ymd(2015, 6, 30).and_hms_opt(23, 0, 0).unwrap(),
Duration::seconds(3600) + Duration::milliseconds(500));
assert_eq!(from_ymd(2015, 7, 1).and_hms_opt(1, 0, 0).unwrap() - leap,
Duration::seconds(3600) - Duration::milliseconds(500));
sourcefn sub(self, rhs: NaiveDateTime) -> OldDuration
fn sub(self, rhs: NaiveDateTime) -> OldDuration
-
operation. Read moresourceimpl SubAssign<Duration> for NaiveDateTime
impl SubAssign<Duration> for NaiveDateTime
sourcefn sub_assign(&mut self, rhs: OldDuration)
fn sub_assign(&mut self, rhs: OldDuration)
-=
operation. Read moresourceimpl Timelike for NaiveDateTime
impl Timelike for NaiveDateTime
sourcefn hour(&self) -> u32
fn hour(&self) -> u32
Returns the hour number from 0 to 23.
See also the NaiveTime::hour
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap();
assert_eq!(dt.hour(), 12);
sourcefn minute(&self) -> u32
fn minute(&self) -> u32
Returns the minute number from 0 to 59.
See also the NaiveTime::minute
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap();
assert_eq!(dt.minute(), 34);
sourcefn second(&self) -> u32
fn second(&self) -> u32
Returns the second number from 0 to 59.
See also the NaiveTime::second
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap();
assert_eq!(dt.second(), 56);
sourcefn nanosecond(&self) -> u32
fn nanosecond(&self) -> u32
Returns the number of nanoseconds since the whole non-leap second. The range from 1,000,000,000 to 1,999,999,999 represents the leap second.
See also the NaiveTime::nanosecond
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap();
assert_eq!(dt.nanosecond(), 789_000_000);
sourcefn with_hour(&self, hour: u32) -> Option<NaiveDateTime>
fn with_hour(&self, hour: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the hour number changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the NaiveTime::with_hour
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap();
assert_eq!(dt.with_hour(7),
Some(NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(7, 34, 56, 789).unwrap()));
assert_eq!(dt.with_hour(24), None);
sourcefn with_minute(&self, min: u32) -> Option<NaiveDateTime>
fn with_minute(&self, min: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the minute number changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the
NaiveTime::with_minute
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap();
assert_eq!(dt.with_minute(45),
Some(NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 45, 56, 789).unwrap()));
assert_eq!(dt.with_minute(60), None);
sourcefn with_second(&self, sec: u32) -> Option<NaiveDateTime>
fn with_second(&self, sec: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the second number changed.
Returns None
when the resulting NaiveDateTime
would be invalid. As
with the NaiveDateTime::second
method, the input range is
restricted to 0 through 59.
See also the NaiveTime::with_second
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap();
assert_eq!(dt.with_second(17),
Some(NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 17, 789).unwrap()));
assert_eq!(dt.with_second(60), None);
sourcefn with_nanosecond(&self, nano: u32) -> Option<NaiveDateTime>
fn with_nanosecond(&self, nano: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with nanoseconds since the whole non-leap second changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
As with the NaiveDateTime::nanosecond
method,
the input range can exceed 1,000,000,000 for leap seconds.
See also the NaiveTime::with_nanosecond
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap();
assert_eq!(dt.with_nanosecond(333_333_333),
Some(NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_nano_opt(12, 34, 56, 333_333_333).unwrap()));
assert_eq!(dt.with_nanosecond(1_333_333_333), // leap second
Some(NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_nano_opt(12, 34, 56, 1_333_333_333).unwrap()));
assert_eq!(dt.with_nanosecond(2_000_000_000), None);