1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::{Attribute, Error, ObjHandle, Result, TransientObject};
use optee_utee_sys as raw;
use std::{mem, ptr};

/// Specify one of the available cryptographic operations.
#[repr(u32)]
pub enum OperationMode {
    /// Encryption mode
    Encrypt = 0,
    /// Decryption mode
    Decrypt = 1,
    /// Signature generation mode
    Sign = 2,
    /// Signature verfication mode
    Verify = 3,
    /// MAC mode
    Mac = 4,
    /// Digest mode
    Digest = 5,
    /// Key derivation mode
    Derive = 6,
    /// Reserve for testing and validation
    IllegalValue = 0x7fffffff,
}

/// Represent the information about a crypto information.
pub struct OperationInfo {
    raw: raw::TEE_OperationInfo,
}

impl OperationInfo {
    /// Return the `OperationInfo` struct based on the raw struct `TEE_OperationInfo`.
    ///
    /// The raw structure contains following fields:
    ///
    /// 1) `algorithm`: One of the algorithm of [AlgorithmId](AlgorithmId).
    /// 2) `mode`: One of the mode of [OperationMode](OperationMode).
    /// 3) `maxKeySize`: The maximum key sizes of different algorithms as defined in
    /// [TransientObjectType](../object/enum.TransientObjectType.html).
    /// 4) `operationClass`: One of the constants from [OperationConstant](OperationConstant).
    /// 5) `keySize`:
    /// 5.1) For an operation that makes no use of keys, 0.
    /// 5.2) For an operation that uses a single key, the actual size of this key.
    /// 5.3) For an operation that uses multiple keys, 0. (The actual value of `keySize` can be obtained from
    /// [OperationInfoMultiple](OperationInfoMultiple)).
    /// 6) `requiredKeyUsage`:
    /// 6.1) For an operation that makes no use of keys, 0.
    /// 6.2) For an operation that uses a single key, a bit vector that describes the necessary bits in the object
    /// usage for `set_key` functions to succeed without panicking.
    /// 6.3) For an operation that uses multiple keys, 0. (The actual value of `requiredKeyUsage` can be obtained from
    /// [OperationInfoMultiple](OperationInfoMultiple).
    /// 7) `digestLength`: For a [Mac](Mac), [AE](AE), or [Digest](Digest), describes the number of bytes in the digest or tag.
    /// 8) `handleState`: A bit vector describing the current state of the operation. Contains one or more of the
    /// [HandleFlag](../object/struct.HandleFlag.html).
    pub fn from_raw(raw: raw::TEE_OperationInfo) -> Self {
        Self { raw }
    }

    /// Return the `keySize` field of the raw structure `TEE_OperationInfo`.
    pub fn key_size(&self) -> u32 {
        self.raw.keySize
    }

    /// Return the `maxDataSize` field of the raw structure `TEE_OperationInfo`.
    pub fn max_key_size(&self) -> u32 {
        self.raw.maxKeySize
    }
}

/// Every operation of [AE](AE), [Asymmetric](Asymmetric), [Cipher](Cipher),
/// [DeriveKey](DeriveKey), [Digest](Digest), [Mac](Mac) can be either one of the two states.
#[repr(u32)]
pub enum OperationStates {
    /// Nothing is going on.
    Initial = 0x00000000,
    /// An operation is in progress.
    Active = 0x00000001,
}

/// Define the supported crypto operation.
pub enum OperationConstant {
    /// [Cipher](Cipher)
    Cipher = 1,
    /// [Mac](Mac)
    Mac = 3,
    /// [AE](AE)
    Ae = 4,
    /// [Digest](Digest)
    Digest = 5,
    /// [Asymmetric](Asymmetric)
    AsymmetricCipher = 6,
    /// [Asymmetric](Asymmetric)
    AsymmetricSignature = 7,
    /// [DeriveKey](DeriveKey)
    KeyDerivation = 8,
}

/// Represent the information about a crypto information which uses multiple keys.
pub struct OperationInfoMultiple {
    raw: *mut raw::TEE_OperationInfoMultiple,
    size: usize,
}

impl OperationInfoMultiple {
    /// Return the `OperationInfoMultiple` struct based on the raw struct `TEE_OperationInfo`.
    ///
    /// The raw structure contains following fields:
    ///
    /// 1) `algorithm`: One of the algorithm of [AlgorithmId](AlgorithmId).
    /// 2) `mode`: One of the mode of [OperationMode](OperationMode).
    /// 3) `maxKeySize`: The maximum key sizes of different algorithms as defined in
    /// [TransientObjectType](../object/enum.TransientObjectType.html).
    /// 4) `operationClass`: One of the constants from [OperationConstant](OperationConstant).
    /// 5) `digestLength`: For a [Mac](Mac), [AE](AE), or [Digest](Digest), describes the number of bytes in the digest or tag.
    /// 6) `handleState`: A bit vector describing the current state of the operation. Contains one or more of the [HandleFlag](../object/struct.HandleFlag.html).
    /// 7) `operationState`: Every operation has two states which are defined as
    ///    [OperationStates](OperationStates).
    /// 8) `numberOfKeys`: This is set to the number of keys required by this operation. May be 0 for an operation which requires no keys.
    /// 9) `keyInformation`: This array contains numberOfKeys entries, each of which defines the details for one key used by the operation,
    /// in the order they are defined.
    /// If the buffer is larger than required to support `numberOfKeys` entries, the additional space is not initialized or modified.
    /// For each element:
    /// 9.1) `keySize`: If a key is programmed in the operation, the actual size of this key, otherwise 0.
    /// 9.2) `requiredKeyUsage`: A bit vector that describes the necessary bits in the object usage for `set_key` or `set_key_2` to succeed without panicking.
    pub fn from_raw(raw: *mut raw::TEE_OperationInfoMultiple, size: usize) -> Self {
        Self { raw, size }
    }

    /// Return the raw struct `TEE_OperationInfoMultiple`.
    pub fn raw(&self) -> *mut raw::TEE_OperationInfoMultiple {
        self.raw
    }

    /// Return the `size` field of the raw structure `TEE_OperationInfoMultiple`.
    pub fn size(&self) -> usize {
        self.size
    }
}

/// An opaque reference that identifies a particular cryptographic operation.
pub struct OperationHandle {
    raw: *mut raw::TEE_OperationHandle,
}

impl OperationHandle {
    fn from_raw(raw: *mut raw::TEE_OperationHandle) -> OperationHandle {
        Self { raw }
    }

    fn handle(&self) -> raw::TEE_OperationHandle {
        unsafe { *(self.raw) }
    }

    fn null() -> Self {
        OperationHandle::from_raw(ptr::null_mut())
    }

    fn allocate(algo: AlgorithmId, mode: OperationMode, max_key_size: usize) -> Result<Self> {
        let raw_handle: *mut raw::TEE_OperationHandle = Box::into_raw(Box::new(ptr::null_mut()));
        match unsafe {
            raw::TEE_AllocateOperation(
                raw_handle as *mut _,
                algo as u32,
                mode as u32,
                max_key_size as u32,
            )
        } {
            raw::TEE_SUCCESS => Ok(Self::from_raw(raw_handle)),
            code => Err(Error::from_raw_error(code)),
        }
    }

    fn info(&self) -> OperationInfo {
        let mut raw_info: raw::TEE_OperationInfo = unsafe { mem::zeroed() };
        unsafe { raw::TEE_GetOperationInfo(self.handle(), &mut raw_info) };
        OperationInfo::from_raw(raw_info)
    }

    fn info_multiple(&self, info_buf: &mut [u8]) -> Result<OperationInfoMultiple> {
        let mut tmp_size: usize = 0;
        match unsafe {
            raw::TEE_GetOperationInfoMultiple(self.handle(), info_buf.as_ptr() as _, &mut tmp_size)
        } {
            raw::TEE_SUCCESS => Ok(OperationInfoMultiple::from_raw(
                info_buf.as_ptr() as _,
                tmp_size,
            )),
            code => Err(Error::from_raw_error(code)),
        }
    }

    fn reset(&mut self) {
        unsafe {
            raw::TEE_ResetOperation(self.handle());
        }
    }

    fn set_key<T: ObjHandle>(&self, object: &T) -> Result<()> {
        match unsafe { raw::TEE_SetOperationKey(self.handle(), object.handle()) } {
            raw::TEE_SUCCESS => return Ok(()),
            code => Err(Error::from_raw_error(code)),
        }
    }

    fn copy<T: OpHandle>(&mut self, src: &T) {
        unsafe {
            raw::TEE_CopyOperation(self.handle(), src.handle());
        }
    }
}

/// determine whether a combination of algId and element is supported
pub fn is_algorithm_supported(alg_id: u32, element: u32) -> Result<()> {
    match unsafe { raw::TEE_IsAlgorithmSupported(alg_id, element) } {
        raw::TEE_SUCCESS => Ok(()),
        code => Err(Error::from_raw_error(code)),
    }
}

// free before check it's not null
/// Deallocate all resources associated with an operation handle. After this function is called,
/// the operation handle is no longer valid. All cryptographic material in the operation is destroyed.
impl Drop for OperationHandle {
    fn drop(&mut self) {
        unsafe {
            if self.raw != ptr::null_mut() {
                raw::TEE_FreeOperation(self.handle());
            }
            Box::from_raw(self.raw);
        }
    }
}

/// A trait for a crypto operation to return its handle.
pub trait OpHandle {
    /// Return the handle of an operation.
    fn handle(&self) -> raw::TEE_OperationHandle;
}

/// An operation for digest the message.
pub struct Digest(OperationHandle);

impl Digest {
    /// Accumulate message data for hashing. The message does not have to be block aligned.
    /// Subsequent calls to this function are possible. The operation may be in either
    /// initial or active state and becomes active.
    ///
    /// # Parameters
    ///
    /// 1) `chunk`: Chunk of data to be hashed
    ///
    /// # Panics
    ///
    /// 1) If the operation is not allocated with valid algorithms.
    /// 2) if input data exceeds maximum length for algorithm.
    /// 3) Hardware or cryptographic algorithm failure.
    /// 4) If the Implementation detects any other error.
    pub fn update(&self, chunk: &[u8]) {
        unsafe {
            raw::TEE_DigestUpdate(self.handle(), chunk.as_ptr() as _, chunk.len());
        }
    }

    /// Finalize the message digest operation and produces the message hash. Afterwards the
    /// Message Digest operation is reset to initial state and can be reused.
    ///
    /// # Parameters
    ///
    /// 1) `chunk`: Last chunk of data to be hashed.
    /// 2) `hash`: Output buffer filled with the message hash. This buffer should be large enough to
    ///    hold the hash message. The real used size is returned by this function.
    ///
    /// # Example
    ///
    /// ```no_run
    /// let chunk = [0u8;8];
    /// let chunk = [1u8;8];
    /// let hash = [0u8;32];
    /// match Digest::allocate(AlgorithmId::Sha256) {
    ///     Ok(operation) =>
    ///     {
    ///         operation.update(&chunk1);
    ///         match operation.do_final(&chunk2, hash) {
    ///             Ok(hash_len) => {
    ///                 // ...
    ///                 Ok(())
    ///             }
    ///             Err(e) => Err(e),
    ///         }
    ///     }
    ///     Err(e) => Err(e),
    /// }
    /// ```
    ///
    /// # Errors
    ///
    /// 1) `ShortBuffer`: If the `hash` is too small. Operation is not finalized for this error.
    ///
    /// # Panics
    /// 1) If the operation is not allocated with valid algorithms.
    /// 2) if input data exceeds maximum length for algorithm.
    /// 3) Hardware or cryptographic algorithm failure.
    /// 4) If the Implementation detects any other error.
    //hash size is dynamic changed so we returned it's updated size
    pub fn do_final(&self, chunk: &[u8], hash: &mut [u8]) -> Result<usize> {
        let mut hash_size: usize = hash.len();
        match unsafe {
            raw::TEE_DigestDoFinal(
                self.handle(),
                chunk.as_ptr() as _,
                chunk.len(),
                hash.as_mut_ptr() as _,
                &mut hash_size,
            )
        } {
            raw::TEE_SUCCESS => return Ok(hash_size),
            code => Err(Error::from_raw_error(code)),
        }
    }

    /// Create a Digest operation without any specific algorithm or other data.
    pub fn null() -> Self {
        Self(OperationHandle::null())
    }

    /// Allocate a new cryptographic operation and sets the mode and algorithm type.
    ///
    /// # Parameters
    ///
    /// 1) `algo`: One of the algorithms that support Digest as listed in
    ///    [AlgorithmId](AlgorithmId).
    /// 2) `max_key_size`: The maximum key sizes of different algorithms as defined in
    ///    [TransientObjectType](../object/enum.TransientObjectType.html).
    ///
    /// # Example
    ///
    /// ```no_run
    /// match Digest::allocate(AlgorithmId::Sha256) {
    ///     Ok(operation) =>
    ///     {
    ///         // ...
    ///         Ok(())
    ///     }
    ///     Err(e) => Err(e),
    /// }
    /// ```
    ///
    /// # Errors
    ///
    /// 1) `OutOfMemory`: If not enough resources are available to allocate the object handle.
    /// 2) `NotSupported`: If the key size is not supported or the object type is not supported.
    ///
    /// # Panics
    ///
    /// 1) If the Implementation detects any error associated with this function which is not
    /// explicitly associated with a defined return code for this function.
    pub fn allocate(algo: AlgorithmId) -> Result<Self> {
        match OperationHandle::allocate(algo, OperationMode::Digest, 0) {
            Ok(handle) => Ok(Self(handle)),
            Err(e) => Err(e),
        }
    }

    /// Return the characteristics of a Digest operation.
    ///
    /// # Example
    ///
    /// ```no_run
    /// match Digest::allocate(AlgorithmId::Md5, 128) {
    ///     Ok(operation) =>
    ///     {
    ///         let info = operation.info();
    ///         Ok(())
    ///     }
    ///     Err(e) => Err(e),
    /// }
    /// ```
    ///
    /// # Panics
    /// 1) If the operation is not a valid opened operation.
    /// 2) if the Implementation detecs any other error.
    pub fn info(&self) -> OperationInfo {
        self.0.info()
    }

    /// Return the characteristics of a Digest operation with multiple keys.
    ///
    /// # Parameters
    ///
    /// 1) `info_buf`: The buffer is supposed to save multiple keys, and its size should be large enough before passed in.
    /// The number of keys about this operation can be calculated as: OperationInfoMultiple::size -
    /// size_of([OperationInfoMultiple](OperationInfoMultiple)) / size_of ( raw::TEE_OperationInfoKey)+1.
    ///
    /// # Example
    ///
    /// ```no_run
    /// match Digest::allocate(AlgorithmId::Md5, 128) {
    ///     Ok(operation) =>
    ///     {
    ///         let mut buffer = [0u32, 12];
    ///         match operation.info_multiple(&mut buffer) {
    ///             Ok(info_multiple) => {
    ///                 // ...
    ///                 Ok(())
    ///             }
    ///             Err(e) => Err(e),
    ///         }
    ///     }
    ///     Err(e) => Err(e),
    /// }
    /// ```
    ///
    /// # Errors:
    ///
    /// 1) `ShortBuffer`: If the `info_buf` is not large enough to hold an
    ///    [OperationInfoMultiple](OperationInfoMultiple) and the corresponding keys.
    ///
    /// # Panics:
    ///
    /// 1) If operation is not a valid opened object.
    /// 2) If the Implementation detects any other error.
    // Here the multiple info total size is not sure
    // Passed in array is supposed to provide enough size for this struct
    pub fn info_multiple(&self, info_buf: &mut [u8]) -> Result<OperationInfoMultiple> {
        self.0.info_multiple(info_buf)
    }

    /// Reset the operation state to the state after initial [allocate](Digest::allocate) with the
    /// add addition of any keys which were configured subsequent to this so that current operation
    /// can be reused with the same keys.
    ///
    /// # Panics
    ///
    /// 1) If operation is not a valid opened object.
    /// 2) If the key has not been set yet.
    /// 3) Hardware or cryptographic algorithm failure.
    /// 4) If the Implementation detects any other error.
    pub fn reset(&mut self) {
        self.0.reset()
    }

    /// Copy an operation state to another operation. This also copies the key material associated
    /// with the source operation.
    ///
    /// # Parameters
    ///
    /// 1) `src`: the source operation.
    /// 1.1) If `src` has no key programmed, then the key of this operation is cleared. If there is a key
    /// programmed in srcOperation, then the maximum key size of current SHALL be greater than or
    /// equal to the actual key size of src.
    ///
    /// # Example
    ///
    /// ```no_run
    /// match Digest::allocate(AlgorithmId::Sha256) {
    ///     Ok(operation) =>
    ///     {
    ///         match Digest::allocate(AlgorithmId::Sha256) {
    ///             Ok(operation2) =>
    ///             {
    ///                 // ...
    ///                 operation.copy(operation2);
    ///                 Ok(())
    ///             }
    ///             Err(e) => Err(e),
    ///         }
    ///     }
    ///     Err(e) => Err(e),
    /// }
    /// ```
    ///
    /// # Panics
    ///
    /// 1) If the operation or source operation is not a valid opened operation.
    /// 2) If the alogirhtm or mode differe in two perations.
    /// 3) If `src` has akey and its size is greater than the maximum key size of the operation.
    /// 4) Hardware or cryptographic algorithm failure.
    /// 5) If the Implementation detects any other error.
    pub fn copy<T: OpHandle>(&mut self, src: &T) {
        self.0.copy(src)
    }
}

impl OpHandle for Digest {
    fn handle(&self) -> raw::TEE_OperationHandle {
        self.0.handle()
    }
}

/// An operation for conducting symmetric cipher encryption / decryption.
/// This operation defines the way to perform symmetric cipher operations, such as AES.
/// They cover both block ciphers and stream ciphers.
pub struct Cipher(OperationHandle);

impl Cipher {
    /// Start the symmetric cipher operation. The function should be called after the
    /// [set_key](Cipher::set_key) or [set_key_2](Cipher::set_key_2).
    ///
    /// After called, if the operation is in active state, it is reset and then initialized.
    /// If the operation is in initial state, it is moved to active state.
    ///
    /// # Parameters
    ///
    /// 1) `iv`: buffer contains the operation Initialization Vector, which is used for:
    /// 1.1) [AesCbcNopad](AlgorithmId::AesCbcNopad): IV;
    /// 1.2) [AesCtr](AlgorithmId::AesCtr): Initial Counter Value;
    /// 1.3) [AesCts](AlgorithmId::AesCts): IV;
    /// 1.4) [AesXts](AlgorithmId::AesXts): Tweak Value;
    /// 1.5) [AesCcm](AlgorithmId::AesCcm): Nonce Value;
    /// 1.6) [AesGcm](AlgorithmId::AesGcm): Nonce Value;
    /// 1.7) [AesCbcNopad](AlgorithmId::AesCbcNopad): IV.
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for `Cipher`.
    /// 2) If no key is programmed in the operation.
    /// 3) If the IV does not have the length required by the algorithm.
    /// 4) Hardware or cryptographic algorithm failure.
    /// 5) If the Implementation detects any other error.
    pub fn init(&self, iv: &[u8]) {
        unsafe { raw::TEE_CipherInit(self.handle(), iv.as_ptr() as _, iv.len()) };
    }

    /// Encrypt or decrypt the source data.
    ///
    /// Input data does not have to be a multiple of block size. Subsequent calls to this function are possible.
    /// Unless one or more calls of this function have supplied sufficient input data, no output is generated.
    /// The function should be called after the [init](Cipher::init).
    ///
    /// # Parameters
    ///
    /// 1) `src`: Input data buffer to be encrypted or decrypted.
    /// 2) `dest`: Output buffer.
    ///
    /// # Example
    ///
    /// ```no_run
    /// let iv = [0u8, 16];
    /// let key = [0u8, 16];
    /// let src = [1u8; 4096];
    /// let mut dest = [0u8; 4096];
    /// match Cipher::allocate(AlgorithmId::AesCtr, 128) {
    ///     Ok(operation) =>
    ///     {
    ///         match TransientObject::allocate(TransientObjectType::Aes, 128) {
    ///             Ok(object) =>
    ///             {
    ///                 let attr = AttributeMemref::from_ref(AttributeId::SecretValue, &key);
    ///                 object.populate(&[attr.into()])?;
    ///                 operation.set_key(&object)?;
    ///                 operation.init(&iv);
    ///                 operation.update(&src, &mut dest)?;
    ///                 Ok(())
    ///             }
    ///             Err(e) => Err(e),
    ///         }
    ///     }
    ///     Err(e) => Err(e),
    /// }
    /// ```
    ///
    /// # Errors
    ///
    /// 1) `ShortBuffer`: If the output buffer is not large enough to contain the output.
    /// In this case, the input is not fed into the algorithm.
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for `Cipher`.
    /// 2) If the function is called before [init](Cipher::init) or after
    ///    [do_final](Cipher::do_final).
    /// 3) Hardware or cryptographic algorithm failure.
    /// 4) If the Implementation detects any other error.
    pub fn update(&self, src: &[u8], dest: &mut [u8]) -> Result<usize> {
        let mut dest_size: usize = dest.len();
        match unsafe {
            raw::TEE_CipherUpdate(
                self.handle(),
                src.as_ptr() as _,
                src.len(),
                dest.as_mut_ptr() as _,
                &mut dest_size,
            )
        } {
            raw::TEE_SUCCESS => {
                return Ok(dest_size as usize);
            }
            code => Err(Error::from_raw_error(code)),
        }
    }

    /// Finalize the cipher operation, processing data that has not been processed by previous calls
    /// to [update](Cipher::update) as well as data supplied in `src`. The operation handle can be reused or re-initialized.
    ///
    /// # Parameters
    ///
    /// 1) `src`: Input data buffer to be encrypted or decrypted.
    /// 2) `dest`: Output buffer.
    ///
    /// # Errors
    ///
    /// 1) `ShortBuffer`: If the output buffer is not large enough to contain the output.
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for `Cipher`.
    /// 2) If the function is called before [init](Cipher::init).
    /// 3) Hardware or cryptographic algorithm failure.
    /// 4) If the Implementation detects any other error.
    pub fn do_final(&self, src: &[u8], dest: &mut [u8]) -> Result<usize> {
        let mut dest_size: usize = dest.len();
        match unsafe {
            raw::TEE_CipherDoFinal(
                self.handle(),
                src.as_ptr() as _,
                src.len(),
                dest.as_mut_ptr() as _,
                &mut dest_size,
            )
        } {
            raw::TEE_SUCCESS => return Ok(dest_size as usize),
            code => Err(Error::from_raw_error(code)),
        }
    }

    /// Create a Cipher operation without any specific algorithm or other data.
    pub fn null() -> Self {
        Self(OperationHandle::null())
    }

    /// Function usage is similar to [Digest::allocate](Digest::allocate).
    pub fn allocate(algo: AlgorithmId, mode: OperationMode, max_key_size: usize) -> Result<Self> {
        match OperationHandle::allocate(algo, mode, max_key_size) {
            Ok(handle) => Ok(Self(handle)),
            Err(e) => Err(e),
        }
    }

    /// Function usage is similar to [Digest::info](Digest::info).
    pub fn info(&self) -> OperationInfo {
        self.0.info()
    }

    /// Function usage is similar to [Digest::info_multiple](Digest::info_multiple).
    pub fn info_multiple(&self, info_buf: &mut [u8]) -> Result<OperationInfoMultiple> {
        self.0.info_multiple(info_buf)
    }

    /// Program the key of Digest operation. That ids, it associates the operation with a key.
    ///
    /// # Parameters
    ///
    /// 1) `object`: The object can either be a [Transient](../object/struct.TransientObject.html)
    ///    or [Persistent](../object/struct.PersistentObject.html). The key material is copied from
    ///    the key object handle into the operation. After the key has been set, there is no longer
    ///    any link between the operation and the key object. The object handle can be closed or reset
    ///    and this will not affect the operation. This copied material exists until the operation is
    ///    freed or another key is set into the operation.
    ///
    /// # Errors
    ///
    /// 1) `CorruptObject`: If the object is corrupt. The object handle is closed.
    /// 2) `StorageNotAvailable`: If the object is stored in a storage area which is
    ///    currently inaccessible.
    ///
    /// # Panics
    ///
    /// 1) If operation is not a valid opened object.
    /// 2) If object is not null and is not a valid key object.
    /// 3) If object is not initialized.
    /// 4) If the operation expect two keys as [AesXts](AlgorithmId::AesXts).
    /// 5) If the type, size, or usage of object is not compatible with the algorithm, mode, or size of the operation.
    /// 6) If operation is not in initial state.
    /// 7) Hardware or cryptographic algorithm failure.
    /// 8) If the Implementation detects any other error.
    pub fn set_key<T: ObjHandle>(&self, object: &T) -> Result<()> {
        self.0.set_key(object)
    }

    /// Initialize an expisting operation with two keys for [AesXts](AlgorithmId::AesXts).
    ///
    /// # Parameters:
    ///
    /// object1 and object2 SHALL both be non-NULL or both NULL. object1 and object2 SHALL NOT refer to keys with
    /// bitwise identical [SecretValue](../object/enum.AttributeId.html#variant.SecretValue) attributes.
    ///
    /// # Errors
    ///
    /// 1) `CorruptObject`: If the object1 is corrupt. The object handle is closed.
    /// 2) `CorruptObject2`: If the object2 is corrupt. The object handle is closed.
    /// 3) `StorageNotAvailable`: If the object1 is stored in a storage area which is
    ///    currently inaccessible.
    /// 4) `StorageNotAvailable2`: If the object2 is stored in a storage area which is
    ///    currently inaccessible.
    ///
    /// # Panics
    ///
    /// 1) If operation is not a valid opened object.
    /// 2) If object1 and object2 are not both null and object1 or object2 or both are not a valid key object.
    /// 3) If object1 or object2 is not initialized.
    /// 4) If the operation algorithm is not [AesXts](AlgorithmId::AesXts).
    /// 5) If the type, size, or usage of any object is not compatible with the algorithm, mode, or size of the operation.
    /// 6) If operation is not in initial state.
    /// 7) Hardware or cryptographic algorithm failure.
    /// 8) If the Implementation detects any other error.
    pub fn set_key_2<T: ObjHandle, D: ObjHandle>(&self, object1: &T, object2: &D) -> Result<()> {
        match unsafe {
            raw::TEE_SetOperationKey2(self.handle(), object1.handle(), object2.handle())
        } {
            raw::TEE_SUCCESS => return Ok(()),
            code => Err(Error::from_raw_error(code)),
        }
    }

    /// Function usage is similar to [Digest::copy](Digest::copy).
    pub fn copy<T: OpHandle>(&mut self, src: &T) {
        self.0.copy(src)
    }
}

impl OpHandle for Cipher {
    fn handle(&self) -> raw::TEE_OperationHandle {
        self.0.handle()
    }
}

/// An operation for performing MAC (Message Authentication Code) operations, such as `HMAC`
/// or `AES-CMAC` operations. This operation is not used for Authenticated Encryption algorithms,
/// which SHALL use the functions defined in [AE](AE).
pub struct Mac(OperationHandle);

impl Mac {
    /// Initialize a MAC opeartion. The The function should be called after the
    /// [set_key](Mac::set_key).
    ///
    /// # Parameters
    ///
    /// 1) `iv`: Input buffer containing the operation Initialization Vector, if applicable
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for `Mac`.
    /// 2) If no key is programmed in the operation.
    /// 3) If the Initialization Vector does not have the length required by the algorithm.
    /// 4) Hardware or cryptographic algorithm failure.
    /// 5) If the Implementation detects any other error.
    pub fn init(&self, iv: &[u8]) {
        unsafe { raw::TEE_MACInit(self.handle(), iv.as_ptr() as _, iv.len()) };
    }

    /// Accumulate data for a MAC calculation.
    ///
    /// Input data does not have to be a multiple of block size. Subsequent calls to this function are possible.
    /// Unless one or more calls of this function have supplied sufficient input data, no output is generated.
    /// The function should be called after the [init](Mac::init).
    ///
    /// # Parameters
    ///
    /// 1) `chunk`: Chunk of the message to be MACed.
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for `Mac`.
    /// 2) If the function is called before [init](Mac::init) or after
    ///    [compute_final](Mac::compute_final) or after [compare_final](Mac::compare_final).
    /// 3) If `chunk` excceds maximum length for algorithm.
    /// 4) Hardware or cryptographic algorithm failure.
    /// 5) If the Implementation detects any other error.
    pub fn update(&self, chunk: &[u8]) {
        unsafe { raw::TEE_MACUpdate(self.handle(), chunk.as_ptr() as _, chunk.len()) };
    }
    /// Finalize the MAC operation with a last chunk of message, and computes the MAC.
    /// Afterwards the operation handle can be reused or re-initialized with a new key.
    /// The operation SHALL be in active state and moves to initial state afterwards.
    ///
    /// # Parameters:
    ///
    /// `message`: Input buffer containing a last message chunk to MAC
    /// `mac`: Output buffer filled with the computed MAC, the size should be allocated enough for
    /// containing the whole computed MAC
    ///
    /// # Example
    ///
    /// ```no_run
    /// let mut key: [u8; 20] = [
    /// 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
    /// 0x36, 0x37, 0x38, 0x39, 0x30,];
    /// let mut out: [u8; 20] = [0u8; 20];
    /// match Mac::allocate(AlgorithmId::HmacSha1, key.len() * 8) {
    ///     Err(e) => return Err(e),
    ///     Ok(mac) => {
    ///         match TransientObject::allocate(TransientObjectType::HmacSha1, key.len() * 8) {
    ///         Err(e) => return Err(e),
    ///         Ok(mut key_object) => {
    ///             let attr = Attribute::from_ref(AttributeId::SecretValue, &key);
    ///             key_object.populate(&[attr.into()])?;
    ///             mac.set_key(&key_object)?;
    ///         }
    ///     }
    ///     mac.init(&[0u8; 0]);
    ///     mac.update(&[0u8; 8]);
    ///     mac.compute_final(&[0u8; 0], &mut out)?;
    /// }
    /// ```
    ///
    /// # Errors
    ///
    /// 1) `ShortBuffer`: If the output buffer is not large enough to contain the output.
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for `Mac`.
    /// 2) If the function is called before before [init](Mac::init) or after
    ///    [compute_final](Mac::compute_final) or after [compare_final](Mac::compare_final).
    /// 3) If input data exceeds maximum length for algorithm.
    /// 4) Hardware or cryptographic algorithm failure.
    /// 5) If the Implementation detects any other error.
    pub fn compute_final(&self, message: &[u8], mac: &mut [u8]) -> Result<usize> {
        let mut mac_size: usize = mac.len();
        match unsafe {
            raw::TEE_MACComputeFinal(
                self.handle(),
                message.as_ptr() as _,
                message.len(),
                mac.as_mut_ptr() as _,
                &mut mac_size,
            )
        } {
            raw::TEE_SUCCESS => Ok(mac_size),
            code => Err(Error::from_raw_error(code)),
        }
    }

    /// Finalize the MAC operation and compares the MAC with the buffer passed to the function.
    /// Afterwards the operation handle can be reused or re-initialized with a new key.
    /// The operation SHALL be in active state and moves to initial state afterwards.
    ///
    /// # Parameters:
    ///
    /// `message`: Input buffer containing a last message chunk to MAC
    /// `mac`: Input buffer containing the MAC to check
    ///
    /// # Errors
    ///
    /// 1) `MacInvald`: If the computed MAC does not correspond to the value passed in `mac`.
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for `Mac`.
    /// 2) If operation is not in active state.
    /// 3) If input data exceeds maximum length for algorithm.
    /// 4) Hardware or cryptographic algorithm failure.
    /// 5) If the Implementation detects any other error.
    pub fn compare_final(&self, message: &[u8], mac: &[u8]) -> Result<()> {
        match unsafe {
            raw::TEE_MACCompareFinal(
                self.handle(),
                message.as_ptr() as _,
                message.len(),
                mac.as_ptr() as _,
                mac.len(),
            )
        } {
            raw::TEE_SUCCESS => Ok(()),
            code => Err(Error::from_raw_error(code)),
        }
    }

    /// Create a Mac operation without any specific algorithm or other data.
    pub fn null() -> Self {
        Self(OperationHandle::null())
    }

    /// Function usage is similar to [Digest::allocate](Digest::allocate).
    pub fn allocate(algo: AlgorithmId, max_key_size: usize) -> Result<Self> {
        match OperationHandle::allocate(algo, OperationMode::Mac, max_key_size) {
            Ok(handle) => Ok(Self(handle)),
            Err(e) => Err(e),
        }
    }

    /// Function usage is similar to [Digest::info](Digest::info).
    pub fn info(&self) -> OperationInfo {
        self.0.info()
    }

    /// Function usage is similar to [Digest::info_multiple](Digest::info_multiple).
    pub fn info_multiple(&self, info_buf: &mut [u8]) -> Result<OperationInfoMultiple> {
        self.0.info_multiple(info_buf)
    }

    /// Function usage is similar to [Digest::reset](Digest::reset).
    pub fn reset(&mut self) {
        self.0.reset()
    }

    /// Function usage is similar to [Cipher::set_key](Cipher::set_key).
    pub fn set_key<T: ObjHandle>(&self, object: &T) -> Result<()> {
        self.0.set_key(object)
    }

    /// Function usage is similar to [Digest::copy](Digest::copy).
    pub fn copy<T: OpHandle>(&mut self, src: &T) {
        self.0.copy(src)
    }
}

impl OpHandle for Mac {
    fn handle(&self) -> raw::TEE_OperationHandle {
        self.0.handle()
    }
}

/// An operation for conducting authenticated encryption / decryption.
pub struct AE(OperationHandle);

impl AE {
    /// Initialize an AE opeartion.
    /// The operation must be in the initial state and remains in the initial state afterwards.
    ///
    /// # Parameters
    ///
    /// 1) `nonce`: The peration nonce or IV
    /// 2) `tag_len`: Size in bits of the tag:
    /// 2.1) for `AES-GCM`, can be 128, 120, 112, 104, or 96;
    /// 2.2) for `AES-CCM`, can be 128, 112, 96, 80, 64, 48, or 32.
    /// 3) `aad_len`: length in bytes of the AAD (Used only for AES-CCM. Ignored for AES-GCM).
    /// 4) `pay_load_len`: Length in bytes of the payload (Used only for AES-CCM. Ignored for AES-GCM).
    ///
    /// # Errors
    ///
    /// 1) `NotSupported`: If the `tag_len` is not supported by the algorithm.
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for `AE`.
    /// 2) If no key is programmed in the operation.
    /// 3) If the nonce length is not compatible with the length required by the algorithm.
    /// 4) If operation is not in initial state.
    /// 5) Hardware or cryptographic algorithm failure.
    /// 6) If the Implementation detects any other error.
    pub fn init(
        &self,
        nonce: &[u8],
        tag_len: usize,
        aad_len: usize,
        pay_load_len: usize,
    ) -> Result<()> {
        match unsafe {
            raw::TEE_AEInit(
                self.handle(),
                nonce.as_ptr() as _,
                nonce.len(),
                tag_len as u32,
                aad_len,
                pay_load_len,
            )
        } {
            raw::TEE_SUCCESS => return Ok(()),
            code => Err(Error::from_raw_error(code)),
        }
    }

    /// Feed a new chunk of Additional Authentication Data (AAD) to the AE operation.
    /// Subsequent calls to this function are possible.
    /// The operation SHALL be in initial state and remains in initial state afterwards.
    ///
    /// # Parameters
    ///
    /// 1) `aad_data`: Input buffer containing the chunk of AAD.
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for `AE`.
    /// 2) If the function is called before [init](AE::init) or has been finalized.
    /// 3) For `AES-CCM`, if the `aad_data.len()` exceeds the requirement.
    /// 4) If operation is not in initial state.
    /// 5) Hardware or cryptographic algorithm failure.
    /// 6) If the Implementation detects any other error.
    pub fn update_aad(&self, aad_data: &[u8]) {
        unsafe {
            raw::TEE_AEUpdateAAD(self.handle(), aad_data.as_ptr() as _, aad_data.len())
        };
    }

    /// Accumulate data for an Authentication Encryption operation.
    /// Input data does not have to be a multiple of block size. Subsequent calls to this function are possible.
    /// Unless one or more calls of this function have supplied sufficient input data, no output is generated.
    /// The buffers `src` and `dest` SHALL be either completely disjoint or equal in their starting positions.
    /// The operation may be in either initial or active state and enters active state afterwards if `src.len()` != 0.
    ///
    /// # Parameters
    ///
    /// 1) `src`: Input data buffer to be encrypted or decrypted.
    /// 2) `dest`: Output buffer.
    ///
    /// # Errors
    ///
    /// `ShortBuffer`: If the output buffer is not large enough to contain the output.
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for `AE`.
    /// 2) If the function is called before [init](AE::init) or has been finalized.
    /// 3) For `AES-CCM`, if the AAD length exceeds the requirement.
    /// 4) For `AES-CCM`, if the payload length is exceeds the requirement.
    /// 5) Hardware or cryptographic algorithm failure.
    /// 6) If the Implementation detects any other error.
    pub fn update(&self, src: &[u8], dest: &mut [u8]) -> Result<usize> {
        let mut dest_size: usize = dest.len();
        match unsafe {
            raw::TEE_AEUpdate(
                self.handle(),
                src.as_ptr() as _,
                src.len(),
                dest.as_mut_ptr() as _,
                &mut dest_size,
            )
        } {
            raw::TEE_SUCCESS => {
                return Ok(dest_size);
            }
            code => Err(Error::from_raw_error(code)),
        }
    }
    /// Process data that has not been processed by previous calls to [update](AE::update) as well as data supplied in `src`.
    /// It completes the AE operation and computes the tag.
    /// The buffers `src` and `dest` SHALL be either completely disjoint or equal in their starting positions.
    /// The operation may be in either initial or active state and enters initial state afterwards.
    ///
    /// # Parameters
    ///
    /// 1) `src`: Reference to final chunk of input data to be encrypted.
    /// 2) `dest`: Output buffer. Can be omitted if the output is to be discarded, e.g. because it is known to be empty.
    /// 3) `tag`: Output buffer filled with the computed tag.
    ///
    /// # Example
    ///
    /// ```no_run
    /// let key = [0xa5u8; 16];
    /// let nonce = [0x00u8; 16];
    /// let aad = [0xffu8; 16];
    /// let clear1 = [0x5au8; 19];
    /// let clear2 = [0xa5u8; 13];
    /// let mut ciph1 = [0x00u8; 16];
    /// let mut ciph2 = [0x00u8; 16];
    /// let mut tag = [0x00u8; 16];
    /// match AE::allocate(AlgorithmId::AesCcm, OperationMode::Encrypt, 128) {
    ///     Ok(operation) => {
    ///         match TransientObject::allocate(TransientObjectType::Aes, 128) {
    ///             Ok(key_object) => {
    ///                 let attr = Attributememref::from_ref(Attributeid::SecretValue, &key);
    ///                 key_object.populat(&[attr.into()])?;
    ///                 operation.set_key(&key_object)?;
    ///                 operation.init(&nonce, 128, 16, 32)?;
    ///                 operation.update_aad(&aad);
    ///                 operation.update(&clear1, &mut ciph1)?;
    ///                 match operation.encrypt_final(&clear2, &mut ciph2) {
    ///                     Ok((_ciph_len, _tag_len)) => {
    ///                         // ...
    ///                         Ok(()),
    ///                     }
    ///                     Err(e) => Err(e),
    ///                 }
    ///             Err(e) => Err(e),
    ///         }
    ///     Err(e) => Err(e),
    /// }
    /// ```
    ///
    /// # Errors
    ///
    /// `ShortBuffer`: If the output tag buffer is not large enough to contain the output.
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for `AE`.
    /// 2) If the function is called before [init](AE::init) or has been finalized.
    /// 3) If the required payload length is known but has not been provided.
    /// 4) Hardware or cryptographic algorithm failure.
    /// 5) If the Implementation detects any other error.
    // both dest and tag are updated with different size
    pub fn encrypt_final(
        &self,
        src: &[u8],
        dest: &mut [u8],
        tag: &mut [u8],
    ) -> Result<(usize, usize)> {
        let mut dest_size: usize = dest.len();
        let mut tag_size: usize = tag.len();
        match unsafe {
            raw::TEE_AEEncryptFinal(
                self.handle(),
                src.as_ptr() as _,
                src.len(),
                dest.as_mut_ptr() as _,
                &mut dest_size,
                tag.as_mut_ptr() as _,
                &mut tag_size,
            )
        } {
            raw::TEE_SUCCESS => {
                return Ok((dest_size, tag_size));
            }
            code => Err(Error::from_raw_error(code)),
        }
    }

    /// Process data that has not been processed by previous calls to [update](AE::update) as well as data supplied in `src`.
    /// It completes the AE operation and computes the tag.
    /// The buffers `src` and `dest` SHALL be either completely disjoint or equal in their starting positions.
    /// The operation may be in either initial or active state and enters initial state afterwards.
    ///
    /// # Parameters
    ///
    /// 1) `src`: Reference to final chunk of input data to be decrypted.
    /// 2) `dest`: Output buffer. Can be omitted if the output is to be discarded, e.g. because it is known to be empty.
    /// 3) `tag`: Input buffer containing the tag to compare.
    ///
    /// # Errors
    ///
    /// `ShortBuffer`: If the output buffer is not large enough to contain the output.
    /// `MacInvalid`: If the computed tag does not match the supplied tag.
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for `AE`.
    /// 2) If the function is called before [init](AE::init) or has been finalized.
    /// 3) If the required payload length is known but has not been provided.
    /// 4) Hardware or cryptographic algorithm failure.
    /// 5) If the Implementation detects any other error.
    pub fn decrypt_final(&self, src: &[u8], dest: &mut [u8], tag: &[u8]) -> Result<usize> {
        let mut dest_size: usize = dest.len();
        match unsafe {
            raw::TEE_AEDecryptFinal(
                self.handle(),
                src.as_ptr() as _,
                src.len(),
                dest.as_mut_ptr() as _,
                &mut dest_size,
                tag.as_ptr() as _,
                tag.len(),
            )
        } {
            raw::TEE_SUCCESS => {
                return Ok(dest_size);
            }
            code => Err(Error::from_raw_error(code)),
        }
    }

    /// Create an AE operation without any specific algorithm or other data.
    pub fn null() -> Self {
        Self(OperationHandle::null())
    }

    /// Function usage is similar to [Digest::allocate](Digest::allocate).
    pub fn allocate(algo: AlgorithmId, mode: OperationMode, max_key_size: usize) -> Result<Self> {
        match OperationHandle::allocate(algo, mode, max_key_size) {
            Ok(handle) => Ok(Self(handle)),
            Err(e) => Err(e),
        }
    }

    /// Function usage is similar to [Digest::info](Digest::info).
    pub fn info(&self) -> OperationInfo {
        self.0.info()
    }

    /// Function usage is similar to [Digest::info_multiple](Digest::info_multiple).
    pub fn info_multiple(&self, info_buf: &mut [u8]) -> Result<OperationInfoMultiple> {
        self.0.info_multiple(info_buf)
    }

    /// Function usage is similar to [Digest::reset](Digest::reset).
    pub fn reset(&mut self) {
        self.0.reset()
    }

    /// Function usage is similar to [Cipher::set_key](Cipher::set_key).
    pub fn set_key<T: ObjHandle>(&self, object: &T) -> Result<()> {
        self.0.set_key(object)
    }

    /// Function usage is similar to [Digest::copy](Digest::copy).
    pub fn copy<T: OpHandle>(&mut self, src: &T) {
        self.0.copy(src)
    }
}

impl OpHandle for AE {
    fn handle(&self) -> raw::TEE_OperationHandle {
        self.0.handle()
    }
}

/// An operation for conducting asymmetric encryption /decryption or asymmetric sign / verify.
/// Note that asymmetric encryption is always “single-stage”,
/// which differs from [Cipher](Cipher) which are always “multi-stage”.
pub struct Asymmetric(OperationHandle);

impl Asymmetric {
    /// Encrypt a message.
    ///
    /// # Parameters
    ///
    /// 1) `params`: Optional operation parameters.
    /// 2) `src`: Input plaintext buffer.
    ///
    /// # Example
    /// ```no_run
    /// let clear = [1u8; 8];
    /// match TransientObject::allocate(TransientObjectType::RsaKeypair, 256) {
    ///     Ok(key) => {
    ///         key.generate_key(256, &[])?;
    ///         match Asymmetric::allocate(
    ///             AlgorithmId::RsaesPkcs1V15,
    ///             OperationMode::Encrypt,
    ///             256) {
    ///             Ok(operation) => {
    ///                 operation.set_key(&key)?;
    ///                 match operation.encrypt(&[], &clear) {
    ///                     Ok(ciph_text) => {
    ///                         // Get cipher text as a vector
    ///                         // ...
    ///                         Ok(())
    ///                     }
    ///                     Err(e) => Err(e),
    ///                 }
    ///             }
    ///             Err(e) => Err(e),
    ///         }
    ///     }
    ///     Err(e) => Err(e),
    /// }
    /// ```
    ///
    /// # Errors
    ///
    /// 1) `ShortBuffer`: If the output buffer is not large enough to hold the result.
    /// 2) `BadParameters`: If the length of the input buffer is not consistent with the algorithm or key size.
    /// 3) `CiphertextInvalid`: If there is an error in the packing used on the ciphertext.
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for [Encrypt](OperationMode::Encrypt] of
    ///    `Asymmetric`.
    /// 2) If no key is programmed in the operation.
    /// 3) Hardware or cryptographic algorithm failure.
    /// 4) If the Implementation detects any other error.
    // This function can update output size with short buffer error when buffer is too
    // short, and example acipher utilizes this feature!
    // Define this function as unsafe because we need to return Ok for short buffer error.
    pub fn encrypt(&self, params: &[Attribute], src: &[u8]) -> Result<Vec<u8>> {
        let p: Vec<raw::TEE_Attribute> = params.iter().map(|p| p.raw()).collect();
        let mut res_size: usize = self.info().key_size() as usize;
        let mut res_vec: Vec<u8> = vec![0u8; res_size as usize];
        match unsafe {
            raw::TEE_AsymmetricEncrypt(
                self.handle(),
                p.as_ptr() as _,
                params.len() as u32,
                src.as_ptr() as _,
                src.len(),
                res_vec.as_mut_ptr() as _,
                &mut res_size,
            )
        } {
            raw::TEE_SUCCESS => {
                res_vec.truncate(res_size);
                return Ok(res_vec);
            }
            code => Err(Error::from_raw_error(code)),
        }
    }

    /// Decrypt a message.
    ///
    /// # Parameters
    ///
    /// 1) `params`: Optional operation parameters.
    /// 2) `src`: Input ciphertext buffer.
    ///
    /// # Errors
    ///
    /// 1) `ShortBuffer`: If the output buffer is not large enough to hold the result.
    /// 2) `BadParameters`: If the length of the input buffer is not consistent with the algorithm or key size.
    /// 3) `CiphertextInvalid`: If there is an error in the packing used on the ciphertext.
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for [Decrypt](OperationMode::Decrypt] of
    ///    `Asymmetric`.
    /// 2) If no key is programmed in the operation.
    /// 3) Hardware or cryptographic algorithm failure.
    /// 4) If the Implementation detects any other error.
    pub fn decrypt(&self, params: &[Attribute], src: &[u8]) -> Result<Vec<u8>> {
        let p: Vec<raw::TEE_Attribute> = params.iter().map(|p| p.raw()).collect();
        let mut res_size: usize = self.info().key_size() as usize;
        let mut res_vec: Vec<u8> = vec![0u8; res_size as usize];
        match unsafe {
            raw::TEE_AsymmetricDecrypt(
                self.handle(),
                p.as_ptr() as _,
                params.len() as u32,
                src.as_ptr() as _,
                src.len(),
                res_vec.as_mut_ptr() as _,
                &mut res_size,
            )
        } {
            raw::TEE_SUCCESS => {
                res_vec.truncate(res_size as usize);
                return Ok(res_vec);
            }
            code => Err(Error::from_raw_error(code)),
        }
    }

    /// Sign a message digest.
    ///
    /// # Parameters
    ///
    /// 1) `params`: Optional operation parameters.
    /// 2) `digest`: Input buffer containing the input message digest.
    /// 3) `signature`: Output buffer written with the signature of the digest.
    ///
    /// # Errors
    ///
    /// 1) `ShortBuffer`: If `signature` is not large enough to hold the result.
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for [Sign](OperationMode::Sign] of
    ///    `Asymmetric`.
    /// 2) If no key is programmed in the operation.
    /// 3) If the mode is not set as [Sign](OperationMode::Sign].
    /// 4) If `digest.len()` is not equal to the hash size of the algorithm.
    /// 3) Hardware or cryptographic algorithm failure.
    /// 4) If the Implementation detects any other error.
    pub fn sign_digest(
        &self,
        params: &[Attribute],
        digest: &[u8],
        signature: &mut [u8],
    ) -> Result<usize> {
        let p: Vec<raw::TEE_Attribute> = params.iter().map(|p| p.raw()).collect();
        let mut signature_size: usize = signature.len();
        match unsafe {
            raw::TEE_AsymmetricSignDigest(
                self.handle(),
                p.as_ptr() as _,
                params.len() as u32,
                digest.as_ptr() as _,
                digest.len(),
                signature.as_mut_ptr() as _,
                &mut signature_size,
            )
        } {
            raw::TEE_SUCCESS => {
                return Ok(signature_size);
            }
            code => Err(Error::from_raw_error(code)),
        }
    }

    /// Verify a message digest.
    ///
    /// # Parameters
    ///
    /// 1) `params`: Optional operation parameters.
    /// 2) `digest`: Input buffer containing the input message digest.
    /// 3) `signature`: Input buffer containing the signature to verify.
    ///
    /// # Errors
    ///
    /// 1) `SignatureInvalid`: If the signature is invalid.
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for [Verify](OperationMode::Verify] of
    ///    `Asymmetric`.
    /// 2) If no key is programmed in the operation.
    /// 3) If the mode is not set as [Verify](OperationMode::Verify].
    /// 4) If `digest.len()` is not equal to the hash size of the algorithm.
    /// 3) Hardware or cryptographic algorithm failure.
    /// 4) If the Implementation detects any other error.
    pub fn verify_digest(
        &self,
        params: &[Attribute],
        digest: &[u8],
        signature: &[u8],
    ) -> Result<()> {
        let p: Vec<raw::TEE_Attribute> = params.iter().map(|p| p.raw()).collect();
        match unsafe {
            raw::TEE_AsymmetricVerifyDigest(
                self.handle(),
                p.as_ptr() as _,
                params.len() as u32,
                digest.as_ptr() as _,
                digest.len(),
                signature.as_ptr() as _,
                signature.len(),
            )
        } {
            raw::TEE_SUCCESS => Ok(()),
            code => Err(Error::from_raw_error(code)),
        }
    }

    /// Create an Asymmetric operation without any specific algorithm or other data.
    pub fn null() -> Self {
        Self(OperationHandle::null())
    }

    /// Function usage is similar to [Digest::allocate](Digest::allocate).
    pub fn allocate(algo: AlgorithmId, mode: OperationMode, max_key_size: usize) -> Result<Self> {
        match OperationHandle::allocate(algo, mode, max_key_size) {
            Ok(handle) => Ok(Self(handle)),
            Err(e) => Err(e),
        }
    }

    /// Function usage is similar to [Digest::info](Digest::info).
    pub fn info(&self) -> OperationInfo {
        self.0.info()
    }

    /// Function usage is similar to [Digest::info_multiple](Digest::info_multiple).
    pub fn info_multiple(&self, info_buf: &mut [u8]) -> Result<OperationInfoMultiple> {
        self.0.info_multiple(info_buf)
    }

    /// Function usage is similar to [Cipher::set_key](Cipher::set_key).
    pub fn set_key<T: ObjHandle>(&self, object: &T) -> Result<()> {
        self.0.set_key(object)
    }

    /// Function usage is similar to [Digest::copy](Digest::copy).
    pub fn copy<T: OpHandle>(&mut self, src: &T) {
        self.0.copy(src)
    }
}

impl OpHandle for Asymmetric {
    fn handle(&self) -> raw::TEE_OperationHandle {
        self.0.handle()
    }
}

/// An operation for derive a shared key object.
pub struct DeriveKey(OperationHandle);

impl DeriveKey {
    /// Take one of the Asymmetric Derivation Operation Algorithm that supports this operation as
    /// defined in [AlgorithmId](AlgorithmId), and output a key object.
    ///
    /// # Parameters
    ///
    /// 1) `params`: For algorithm [DhDeriveSharedSecret][AlgorithmId::DhDeriveSharedSecret],
    ///    [DhPublicValue](../object/enum.AttributeId.html#variant.DhPublicValue) is required as
    ///    the passed in attribute.
    /// 2) `object`: An uninitialized transient object to be filled with the derived key.
    ///
    /// # Example
    ///
    /// ```no_run
    /// let attr_prime = AttributeMemref::from_ref(AttributeId::DhPrime, &[23u8]);
    /// let attr_base = AttributeMemref::from_ref(AttributeId::DhBase, &[5u8]);
    /// let mut public_1 = [0u8; 32];
    /// match TransientObject::allocate(TransientObjectType::DhKeypair, 256) {
    ///     Ok(key_pair_1) => {
    ///         key_pair_1.generate_key(256, &[attr_prime.into(), attr_base.into()])?;
    ///         key_pair_1.ref_attribute(aTTRIBUTEiD::DhPublicValue, &mut public_1)?;
    ///     }
    ///     Err(e) => Err(e),
    /// }
    ///
    /// let attr_prime = AttributeMemref::from_ref(AttributeId::DhPrime, &[23u8]);
    /// let attr_base = AttributeMemref::from_ref(AttributeId::DhBase, &[5u8]);
    /// match TransientObject::allocate(TransientObjectType::DhKeypair, 256) {
    ///     Ok(key_pair_2) => {
    ///         key_pair_2.generate_key(256, &[attr_prime.into(), attr_base.into()])?;
    ///         match DeriveKey::allocate(AlgorithmId::DhDeriveSharedSecret, 256) {
    ///             Ok(operation) => {
    ///                 operation.set_key(&key_pair_2)?;
    ///                 match TransientObject::allocate(TransientObjectType::GenericSecret,
    ///                 256) {
    ///                     // Derived key is saved as an transient object
    ///                     Ok(derived_key) => {
    ///                         let attr_public = AttributeMemref::from_ref(AttributeId::DhPublicValue, &public_1);
    ///                         operation.derive(&[attr_public.into()], &mut derived_key);
    ///                         // ...
    ///                         Ok(())
    ///                     }
    ///                     Err(e) => Err(e),
    ///                 }
    ///             }
    ///             Err(e) => Err(e),
    ///         }
    ///     }
    ///     Err(e) => Err(e),
    /// }
    /// ```
    ///
    /// # Panics
    ///
    /// 1) If the algorithm is not a valid algorithm for `DeriveKey`.
    /// 2) If the `object` is too small for generated value.
    /// 3) If no key is programmed in the operation.
    /// 4) Hardware or cryptographic algorithm failure.
    /// 5) If the Implementation detects any other error.
    pub fn derive(&self, params: &[Attribute], object: &mut TransientObject) {
        let p: Vec<raw::TEE_Attribute> = params.iter().map(|p| p.raw()).collect();
        unsafe {
            raw::TEE_DeriveKey(
                self.handle(),
                p.as_ptr() as _,
                params.len() as u32,
                object.handle(),
            )
        };
    }

    /// Create a DeriveKey operation without any specific algorithm or other data.
    pub fn null() -> Self {
        Self(OperationHandle::null())
    }

    /// Function usage is similar to [Digest::allocate](Digest::allocate).
    /// Currently only supports [DhDeriveSharedSecret][AlgorithmId::DhDeriveSharedSecret] as
    /// `algo`.
    pub fn allocate(algo: AlgorithmId, max_key_size: usize) -> Result<Self> {
        match OperationHandle::allocate(algo, OperationMode::Derive, max_key_size) {
            Ok(handle) => Ok(Self(handle)),
            Err(e) => Err(e),
        }
    }

    /// Function usage is similar to [Digest::info](Digest::info).
    pub fn info(&self) -> OperationInfo {
        self.0.info()
    }

    /// Function usage is similar to [Digest::info_multiple](Digest::info_multiple).
    pub fn info_multiple(&self, info_buf: &mut [u8]) -> Result<OperationInfoMultiple> {
        self.0.info_multiple(info_buf)
    }

    /// Function usage is similar to [Cipher::set_key](Cipher::set_key).
    pub fn set_key<T: ObjHandle>(&self, object: &T) -> Result<()> {
        self.0.set_key(object)
    }

    /// Function usage is similar to [Digest::copy](Digest::copy).
    pub fn copy<T: OpHandle>(&mut self, src: &T) {
        self.0.copy(src)
    }
}

impl OpHandle for DeriveKey {
    fn handle(&self) -> raw::TEE_OperationHandle {
        self.0.handle()
    }
}

/// An operation for generating random data.
pub struct Random();

impl Random {
    /// Generate random data.
    ///
    /// # Parameters
    ///
    /// 1) `res_buffer`: Reference to generated random data
    ///
    /// # Example
    ///
    /// ```no_run
    /// let mut res = [0u8;16];
    /// Random::generate(&mut res);
    /// ```
    ///
    /// # Panics
    ///
    /// 1) Hardware or cryptographic algorithm failure.
    /// 2) If the Implementation detects any other error.
    pub fn generate(res_buffer: &mut [u8]) {
        unsafe {
            raw::TEE_GenerateRandom(res_buffer.as_mut_ptr() as _, res_buffer.len() as _);
        }
    }
}

/// Algorithms that can be allocated as an crypto operation.
#[repr(u32)]
pub enum AlgorithmId {
    /// [Cipher](Cipher) supported algorithm.
    AesEcbNopad = 0x10000010,
    /// [Cipher](Cipher) supported algorithm.
    AesCbcNopad = 0x10000110,
    /// [Cipher](Cipher) supported algorithm.
    AesCtr = 0x10000210,
    /// [Cipher](Cipher) supported algorithm.
    AesCts = 0x10000310,
    /// [Cipher](Cipher) supported algorithm.
    AesXts = 0x10000410,
    /// [Mac](Mac) supported algorithm.
    AesCbcMacNopad = 0x30000110,
    /// [Mac](Mac) supported algorithm.
    AesCbcMacPkcs5 = 0x30000510,
    /// [Mac](Mac) supported algorithm.
    AesCmac = 0x30000610,
    /// [AE](AE) supported algorithm.
    AesCcm = 0x40000710,
    /// [AE](AE) supported algorithm.
    AesGcm = 0x40000810,
    /// [Cipher](Cipher) supported algorithm.
    DesEcbNopad = 0x10000011,
    /// [Cipher](Cipher) supported algorithm.
    DesCbcNopad = 0x10000111,
    /// [Mac](Mac) supported algorithm.
    DesCbcMacNopad = 0x30000111,
    /// [Mac](Mac) supported algorithm.
    DesCbcMacPkcs5 = 0x30000511,
    /// [Cipher](Cipher) supported algorithm.
    Des3EcbNopad = 0x10000013,
    /// [Cipher](Cipher) supported algorithm.
    Des3CbcNopad = 0x10000113,
    /// [Mac](Mac) supported algorithm.
    Des3CbcMacNopad = 0x30000113,
    /// [Mac](Mac) supported algorithm.
    Des3CbcMacPkcs5 = 0x30000513,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Sign](OperationMode::Sign) or [Verify](OperationMode::Verify) mode.
    RsassaPkcs1V15MD5 = 0x70001830,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Sign](OperationMode::Sign) or [Verify](OperationMode::Verify) mode.
    RsassaPkcs1V15Sha1 = 0x70002830,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Sign](OperationMode::Sign) or [Verify](OperationMode::Verify) mode.
    RsassaPkcs1V15Sha224 = 0x70003830,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Sign](OperationMode::Sign) or [Verify](OperationMode::Verify) mode.
    RsassaPkcs1V15Sha256 = 0x70004830,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Sign](OperationMode::Sign) or [Verify](OperationMode::Verify) mode.
    RsassaPkcs1V15Sha384 = 0x70005830,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Sign](OperationMode::Sign) or [Verify](OperationMode::Verify) mode.
    RsassaPkcs1V15Sha512 = 0x70006830,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Sign](OperationMode::Sign) or [Verify](OperationMode::Verify) mode.
    RsassaPkcs1V15MD5Sha1 = 0x7000F830,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Sign](OperationMode::Sign) or [Verify](OperationMode::Verify) mode.
    RsassaPkcs1PssMgf1Sha1 = 0x70212930,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Sign](OperationMode::Sign) or [Verify](OperationMode::Verify) mode.
    RsassaPkcs1PssMgf1Sha224 = 0x70313930,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Sign](OperationMode::Sign) or [Verify](OperationMode::Verify) mode.
    RsassaPkcs1PssMgf1Sha256 = 0x70414930,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Sign](OperationMode::Sign) or [Verify](OperationMode::Verify) mode.
    RsassaPkcs1PssMgf1Sha384 = 0x70515930,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Sign](OperationMode::Sign) or [Verify](OperationMode::Verify) mode.
    RsassaPkcs1PssMgf1Sha512 = 0x70616930,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Encrypt](OperationMode::Encrypt) or [Decrypt](OperationMode::Decrypt) mode.
    RsaesPkcs1V15 = 0x60000130,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Encrypt](OperationMode::Encrypt) or [Decrypt](OperationMode::Decrypt) mode.
    RsaesPkcs1OAepMgf1Sha1 = 0x60210230,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Encrypt](OperationMode::Encrypt) or [Decrypt](OperationMode::Decrypt) mode.
    RsaesPkcs1OAepMgf1Sha224 = 0x60310230,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Encrypt](OperationMode::Encrypt) or [Decrypt](OperationMode::Decrypt) mode.
    RsaesPkcs1OAepMgf1Sha256 = 0x60410230,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Encrypt](OperationMode::Encrypt) or [Decrypt](OperationMode::Decrypt) mode.
    RsaesPkcs1OAepMgf1Sha384 = 0x60510230,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Encrypt](OperationMode::Encrypt) or [Decrypt](OperationMode::Decrypt) mode.
    RsaesPkcs1OAepMgf1Sha512 = 0x60610230,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Encrypt](OperationMode::Encrypt) or [Decrypt](OperationMode::Decrypt) mode.
    RsaNopad = 0x60000030,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Sign](OperationMode::Sign) or [Verify](OperationMode::Verify) mode.
    DSASha1 = 0x70002131,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Sign](OperationMode::Sign) or [Verify](OperationMode::Verify) mode.
    DSASha224 = 0x70003131,
    /// [Asymmetric](Asymmetric) supported algorithm, can be applied with
    /// [Sign](OperationMode::Sign) or [Verify](OperationMode::Verify) mode.
    DSASha256 = 0x70004131,
    /// [DeriveKey](DeriveKey) supported algorithm.
    DhDeriveSharedSecret = 0x80000032,
    /// [Digest](Digest) supported algorithm.
    Md5 = 0x50000001,
    /// [Digest](Digest) supported algorithm.
    Sha1 = 0x50000002,
    /// [Digest](Digest) supported algorithm.
    Sha224 = 0x50000003,
    /// [Digest](Digest) supported algorithm.
    Sha256 = 0x50000004,
    /// [Digest](Digest) supported algorithm.
    Sha384 = 0x50000005,
    /// [Digest](Digest) supported algorithm.
    Sha512 = 0x50000006,
    /// [Mac](Mac) supported algorithm.
    Md5Sha1 = 0x5000000F,
    /// [Mac](Mac) supported algorithm.
    HmacMd5 = 0x30000001,
    /// [Mac](Mac) supported algorithm.
    HmacSha1 = 0x30000002,
    /// [Mac](Mac) supported algorithm.
    HmacSha224 = 0x30000003,
    /// [Mac](Mac) supported algorithm.
    HmacSha256 = 0x30000004,
    /// [Mac](Mac) supported algorithm.
    HmacSha384 = 0x30000005,
    /// [Mac](Mac) supported algorithm.
    HmacSha512 = 0x30000006,
    /// Reserved for GlobalPlatform compliance test applications.
    IllegalValue = 0xefffffff,
}

/// This specification defines support for optional cryptographic elements.
#[repr(u32)]
pub enum ElementId {
    /// Where algId fully defines the required support,
    /// the special value TEE_CRYPTO_ELEMENT_NONE should be used
    ElementNone = 0x00000000,
    /// Source: `NIST`, Generic: `Y`, Size: 192 bits
    EccCurveNistP192 = 0x00000001,
    /// Source: `NIST`, Generic: `Y`, Size: 224 bits
    EccCurveNistP224 = 0x00000002,
    /// Source: `NIST`, Generic: `Y`, Size: 256 bits
    EccCurveNistP256 = 0x00000003,
    /// Source: `NIST`, Generic: `Y`, Size: 384 bits
    EccCurveNistP384 = 0x00000004,
    /// Source: `NIST`, Generic: `Y`, Size: 521 bits
    EccCurveNistP521 = 0x00000005,
}