1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::{Error, Result};
use optee_utee_sys as raw;
use std::{cmp::max, fmt};

pub type BigIntUnit = u32;
pub type BigIntFMMUnit = u32;
pub type BigIntFMMContextUnit = u32;

pub struct BigInt(Vec<BigIntUnit>);

impl BigInt {
    pub fn data_ptr(&self) -> *const u32 {
        self.0.as_ptr()
    }

    // size represents BigInt bits
    pub fn size_in_u32(size: u32) -> u32 {
        return ((size + 31) / 32) + 2;
    }

    pub fn new(bits: u32) -> Self {
        let size: usize = Self::size_in_u32(bits) as usize;
        let mut tmp_vec: Vec<BigIntUnit> = vec![0; size];
        unsafe { raw::TEE_BigIntInit(tmp_vec.as_mut_ptr(), size as usize) };
        Self(tmp_vec)
    }

    pub fn convert_from_octet_string(&mut self, buffer: &[u8], sign: i32) -> Result<()> {
        match unsafe {
            raw::TEE_BigIntConvertFromOctetString(
                self.0.as_mut_ptr(),
                buffer.as_ptr(),
                buffer.len() as usize,
                sign,
            )
        } {
            raw::TEE_SUCCESS => Ok(()),
            code => Err(Error::from_raw_error(code)),
        }
    }

    pub fn convert_to_octet_string(&self) -> Result<Vec<u8>> {
        let mut buffer_size: usize = (self.0.len() - 2) * 4;
        let mut tmp_vec = vec![0u8; buffer_size];
        match unsafe {
            raw::TEE_BigIntConvertToOctetString(
                tmp_vec.as_mut_ptr(),
                &mut buffer_size,
                self.data_ptr(),
            )
        } {
            raw::TEE_SUCCESS => {
                tmp_vec.truncate(buffer_size);
                return Ok(tmp_vec);
            }
            code => Err(Error::from_raw_error(code)),
        }
    }

    pub fn convert_from_s32(&mut self, short_val: i32) {
        unsafe { raw::TEE_BigIntConvertFromS32(self.0.as_mut_ptr(), short_val) };
    }

    pub fn convert_to_s32(&self) -> Result<i32> {
        let mut short_val: i32 = 0;
        match unsafe { raw::TEE_BigIntConvertToS32(&mut short_val as _, self.data_ptr()) } {
            raw::TEE_SUCCESS => Ok(short_val),
            code => Err(Error::from_raw_error(code)),
        }
    }

    /* return negative number if self < target,
    0 if self == target
    positive number if self > target*/
    pub fn compare_big_int(&self, target: &Self) -> i32 {
        unsafe { raw::TEE_BigIntCmp(self.data_ptr(), target.data_ptr()) }
    }

    pub fn compare_s32(&self, target: i32) -> i32 {
        unsafe { raw::TEE_BigIntCmpS32(self.data_ptr(), target) }
    }

    pub fn shift_right(&mut self, op: &Self, bits: usize) {
        // Should return a BigInt, while its size is based on the abs function which is missed
        // right now
        unsafe { raw::TEE_BigIntShiftRight(self.0.as_mut_ptr(), op.data_ptr(), bits) };
    }

    pub fn get_bit(&self, bit_index: u32) -> bool {
        unsafe { raw::TEE_BigIntGetBit(self.data_ptr(), bit_index) }
    }

    pub fn get_bit_count(&self) -> u32 {
        unsafe { raw::TEE_BigIntGetBitCount(self.data_ptr()) }
    }

    pub fn add(op1: &Self, op2: &Self) -> Self {
        let bits = max(Self::get_bit_count(op1), Self::get_bit_count(op2)) + 1;
        let mut res = Self::new(bits);
        unsafe { raw::TEE_BigIntAdd(res.0.as_mut_ptr(), op1.data_ptr(), op2.data_ptr()) };
        res
    }

    pub fn sub(op1: &Self, op2: &Self) -> Self {
        let bits = max(Self::get_bit_count(op1), Self::get_bit_count(op2)) + 1;
        let mut res = Self::new(bits);
        unsafe { raw::TEE_BigIntSub(res.0.as_mut_ptr(), op1.data_ptr(), op2.data_ptr()) };
        res
    }

    pub fn neg(op: &Self) -> Self {
        let mut res = Self::new(Self::get_bit_count(op));
        unsafe { raw::TEE_BigIntNeg(res.0.as_mut_ptr(), op.data_ptr()) };
        res
    }

    pub fn multiply(op1: &Self, op2: &Self) -> Self {
        let bits = Self::get_bit_count(op1) + Self::get_bit_count(op2);
        let mut res = Self::new(bits);
        unsafe { raw::TEE_BigIntMul(res.0.as_mut_ptr(), op1.data_ptr(), op2.data_ptr()) };
        res
    }

    pub fn square(op: &Self) -> Self {
        let mut res = Self::new(2 * Self::get_bit_count(op));
        unsafe { raw::TEE_BigIntSquare(res.0.as_mut_ptr(), op.data_ptr()) };
        res
    }

    // document defines wrong size for result quotient
    pub fn divide(op1: &Self, op2: &Self) -> (Self, Self) {
        let q_bits = match op1.compare_big_int(op2) {
            d if d >= 0 => max(1, Self::get_bit_count(op1) - Self::get_bit_count(op2)),
            _ => 0,
        };
        let r_bits = Self::get_bit_count(op2);
        let mut quotient = Self::new(q_bits);
        let mut remainder = Self::new(r_bits);

        unsafe {
            raw::TEE_BigIntDiv(
                quotient.0.as_mut_ptr(),
                remainder.0.as_mut_ptr(),
                op1.data_ptr(),
                op2.data_ptr(),
            )
        };
        (quotient, remainder)
    }

    pub fn module(op: &Self, n: &Self) -> Self {
        let mut res = Self::new(Self::get_bit_count(n));
        unsafe { raw::TEE_BigIntMod(res.0.as_mut_ptr(), op.data_ptr(), n.data_ptr()) };
        res
    }

    pub fn add_mod(op1: &Self, op2: &Self, n: &Self) -> Self {
        let mut res = Self::new(Self::get_bit_count(n));
        unsafe {
            raw::TEE_BigIntAddMod(
                res.0.as_mut_ptr(),
                op1.data_ptr(),
                op2.data_ptr(),
                n.data_ptr(),
            )
        };
        res
    }

    pub fn sub_mod(op1: &Self, op2: &Self, n: &Self) -> Self {
        let mut res = Self::new(Self::get_bit_count(n));
        unsafe {
            raw::TEE_BigIntSubMod(
                res.0.as_mut_ptr(),
                op1.data_ptr(),
                op2.data_ptr(),
                n.data_ptr(),
            )
        };
        res
    }

    pub fn mul_mod(op1: &Self, op2: &Self, n: &Self) -> Self {
        let mut res = Self::new(Self::get_bit_count(n));
        unsafe {
            raw::TEE_BigIntMulMod(
                res.0.as_mut_ptr(),
                op1.data_ptr(),
                op2.data_ptr(),
                n.data_ptr(),
            )
        };
        res
    }

    pub fn square_mod(op: &Self, n: &Self) -> Self {
        let mut res = Self::new(Self::get_bit_count(n));
        unsafe { raw::TEE_BigIntSquareMod(res.0.as_mut_ptr(), op.data_ptr(), n.data_ptr()) };
        res
    }

    pub fn inv_mod(op: &Self, n: &Self) -> Self {
        let mut res = Self::new(Self::get_bit_count(n));
        unsafe { raw::TEE_BigIntInvMod(res.0.as_mut_ptr(), op.data_ptr(), n.data_ptr()) };
        res
    }

    pub fn relative_prime(op1: &Self, op2: &Self) -> bool {
        unsafe { raw::TEE_BigIntRelativePrime(op1.data_ptr(), op2.data_ptr()) }
    }

    /* pub fn compute_extended_gcd(op1: &Self, op2: &Self) -> (Self, Self, Self)
     * This function is implemented in OP-TEE, while the output size needs to be calculated based
     * on the missing function TEE_BigIntAbs, so we do not port it yet.*/

    pub fn is_probable_prime(&self, confidence_level: u32) -> i32 {
        unsafe { raw::TEE_BigIntIsProbablePrime(self.data_ptr(), confidence_level) }
    }

    pub fn convert_from_big_int_fmm(
        &mut self,
        src: &BigIntFMM,
        n: &BigInt,
        context: BigIntFMMContext,
    ) {
        unsafe {
            raw::TEE_BigIntConvertToFMM(
                self.0.as_mut_ptr(),
                src.data_ptr(),
                n.data_ptr(),
                context.data_ptr(),
            )
        };
    }
}

impl fmt::Display for BigInt {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:x?}", self.0)
    }
}

pub struct BigIntFMMContext(Vec<BigIntFMMContextUnit>);

impl BigIntFMMContext {
    pub fn data_ptr(&self) -> *const u32 {
        self.0.as_ptr()
    }

    fn size_in_u32(size: usize) -> usize {
        unsafe { raw::TEE_BigIntFMMContextSizeInU32(size) }
    }

    // Globalplatform define FMMContext1 here while OP-TEE does not update yet
    pub fn new(bits: u32, modulus: BigInt) -> Result<Self> {
        let size: usize = Self::size_in_u32(bits as usize) as usize;
        let mut tmp_vec: Vec<BigIntFMMContextUnit> = vec![0; size];
        unsafe {
            raw::TEE_BigIntInitFMMContext(tmp_vec.as_mut_ptr(), size, modulus.data_ptr())
        };
        Ok(Self(tmp_vec))
    }
}

pub struct BigIntFMM(Vec<BigIntFMMUnit>);

impl BigIntFMM {
    pub fn data_ptr(&self) -> *const u32 {
        self.0.as_ptr()
    }

    fn size_in_u32(size: usize) -> usize {
        unsafe { raw::TEE_BigIntFMMSizeInU32(size) }
    }

    pub fn new(bits: u32) -> Self {
        let size: usize = Self::size_in_u32(bits as usize) as usize;
        let mut tmp_vec: Vec<BigIntFMMUnit> = vec![0; size];
        unsafe { raw::TEE_BigIntInitFMM(tmp_vec.as_mut_ptr(), size) };
        Self(tmp_vec)
    }

    //Has to be initialized first
    pub fn convert_from_big_int(&mut self, src: &BigInt, n: &BigInt, context: BigIntFMMContext) {
        unsafe {
            raw::TEE_BigIntConvertToFMM(
                self.0.as_mut_ptr(),
                src.data_ptr(),
                n.data_ptr(),
                context.data_ptr(),
            )
        };
    }

    //Has to be initialized first
    pub fn compute_fmm(
        &mut self,
        op1: &BigIntFMM,
        op2: &BigIntFMM,
        n: &BigInt,
        context: BigIntFMMContext,
    ) {
        unsafe {
            raw::TEE_BigIntComputeFMM(
                self.0.as_mut_ptr(),
                op1.data_ptr(),
                op2.data_ptr(),
                n.data_ptr(),
                context.data_ptr(),
            )
        };
    }
}
//OP-TEE in version GP 1.1.1 does not implement function:
//TEE_BigIntSetBit
//TEE_BigIntAssign
//TEE_BigIntAbs
//TEE_BigIntExpMod