1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
use std::cmp;
use std::io::{self, Read, Write};
use byteorder::{ReadBytesExt, ByteOrder, LittleEndian as LE};
use compress::{Encoder, max_compress_len};
use crc32::crc32c;
use decompress::{Decoder, decompress_len};
use error::{Error, IntoInnerError, new_into_inner_error};
use MAX_BLOCK_SIZE;
lazy_static! {
static ref MAX_COMPRESS_BLOCK_SIZE: usize =
max_compress_len(MAX_BLOCK_SIZE);
}
// The special magic string that starts any stream.
//
// This may appear more than once in a stream in order to support easy
// concatenation of files compressed in the Snappy frame format.
const STREAM_IDENTIFIER: &'static [u8] = b"\xFF\x06\x00\x00sNaPpY";
// The body of the special stream identifier.
const STREAM_BODY: &'static [u8] = b"sNaPpY";
// An enumeration describing each of the 4 main chunk types.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum ChunkType {
Stream = 0xFF,
Compressed = 0x00,
Uncompressed = 0x01,
Padding = 0xFE,
}
impl ChunkType {
/// Converts a byte to one of the four defined chunk types represented by
/// a single byte. If the chunk type is reserved, then it is returned as
/// an Err.
fn from_u8(b: u8) -> Result<ChunkType, u8> {
match b {
0xFF => Ok(ChunkType::Stream),
0x00 => Ok(ChunkType::Compressed),
0x01 => Ok(ChunkType::Uncompressed),
0xFE => Ok(ChunkType::Padding),
b => Err(b),
}
}
}
/// A writer for compressing a Snappy stream.
///
/// This `Writer` wraps any other writer that implements `io::Write`. Bytes
/// written to this writer are compressed using the
/// [Snappy frame format](https://github.com/google/snappy/blob/master/framing_format.txt)
/// (file extension `sz`, MIME type `application/x-snappy-framed`).
///
/// Writes are buffered automatically, so there's no need to wrap the given
/// writer in a `std::io::BufWriter`.
///
/// The writer will be flushed automatically when it is dropped. If an error
/// occurs, it is ignored.
pub struct Writer<W: Write> {
/// Our main internal state, split out for borrowck reasons (happily paid).
///
/// Also, it's an `Option` so we can move out of it even though `Writer`
/// impls `Drop`.
inner: Option<Inner<W>>,
/// Our buffer of uncompressed bytes. This isn't part of `inner` because
/// we may write bytes directly from the caller if the given buffer was
/// big enough. As a result, the main `write` implementation needs to
/// accept either the internal buffer or the caller's bytes directly. Since
/// `write` requires a mutable borrow, we satisfy the borrow checker by
/// separating `src` from the rest of the state.
src: Vec<u8>,
}
struct Inner<W> {
/// The underlying writer.
w: W,
/// An encoder that we reuse that does the actual block based compression.
enc: Encoder,
/// The compressed bytes buffer. Bytes are compressed from src (usually)
/// to dst before being written to w.
dst: Vec<u8>,
/// When false, the stream identifier (with magic bytes) must precede the
/// next write.
wrote_stream_ident: bool,
/// Space for writing the header of a chunk before writing it to the
/// underlying writer.
chunk_header: [u8; 8],
}
impl<W: Write> Writer<W> {
/// Create a new writer for streaming Snappy compression.
pub fn new(wtr: W) -> Writer<W> {
Writer {
inner: Some(Inner {
w: wtr,
enc: Encoder::new(),
dst: vec![0; *MAX_COMPRESS_BLOCK_SIZE],
wrote_stream_ident: false,
chunk_header: [0; 8],
}),
src: Vec::with_capacity(MAX_BLOCK_SIZE),
}
}
/// Returns the underlying stream, consuming and flushing this writer.
///
/// If flushing the writer caused an error, then an `IntoInnerError` is
/// returned, which contains both the writer and the original writer.
pub fn into_inner(mut self) -> Result<W, IntoInnerError<Writer<W>>> {
match self.flush() {
Ok(()) => Ok(self.inner.take().unwrap().w),
Err(err) => Err(new_into_inner_error(self, err)),
}
}
/// Gets a reference to the underlying writer in this encoder.
pub fn get_ref(&self) -> &W {
&self.inner.as_ref().unwrap().w
}
}
impl<W: Write> Drop for Writer<W> {
fn drop(&mut self) {
if self.inner.is_some() {
// Ignore errors because we can't conceivably return an error and
// panicing in a dtor is bad juju.
let _ = self.flush();
}
}
}
impl<W: Write> Write for Writer<W> {
fn write(&mut self, mut buf: &[u8]) -> io::Result<usize> {
let mut total = 0;
// If there isn't enough room to add buf to src, then add only a piece
// of it, flush it and mush on.
loop {
let free = self.src.capacity() - self.src.len();
// n is the number of bytes extracted from buf.
let n =
if buf.len() <= free {
break;
} else if self.src.is_empty() {
// If buf is bigger than our entire buffer then avoid
// the indirection and write the buffer directly.
try!(self.inner.as_mut().unwrap().write(buf))
} else {
self.src.extend_from_slice(&buf[0..free]);
try!(self.flush());
free
};
buf = &buf[n..];
total += n;
}
// We're only here if buf.len() will fit within the available space of
// self.src.
debug_assert!(buf.len() <= (self.src.capacity() - self.src.len()));
self.src.extend_from_slice(buf);
total += buf.len();
// We should never expand or contract self.src.
debug_assert!(self.src.capacity() == MAX_BLOCK_SIZE);
Ok(total)
}
fn flush(&mut self) -> io::Result<()> {
if self.src.is_empty() {
return Ok(());
}
try!(self.inner.as_mut().unwrap().write(&self.src));
self.src.truncate(0);
Ok(())
}
}
impl<W: Write> Inner<W> {
fn write(&mut self, mut buf: &[u8]) -> io::Result<usize> {
let mut total = 0;
if !self.wrote_stream_ident {
self.wrote_stream_ident = true;
try!(self.w.write_all(STREAM_IDENTIFIER));
}
while !buf.is_empty() {
// Advance buf and get our block.
let mut src = buf;
if src.len() > MAX_BLOCK_SIZE {
src = &src[0..MAX_BLOCK_SIZE];
}
buf = &buf[src.len()..];
let checksum = crc32c_masked(src);
// Compress the buffer. If compression sucked, throw it out and
// write uncompressed bytes instead. Since our buffer is at most
// MAX_BLOCK_SIZE and our dst buffer has size
// max_compress_len(MAX_BLOCK_SIZE), we have enough space.
let compress_len = try!(self.enc.compress(src, &mut self.dst));
let (chunk_type, chunk_len) =
// We add 4 to the chunk_len because of the checksum.
if compress_len >= src.len() - (src.len() / 8) {
(ChunkType::Uncompressed, 4 + src.len())
} else {
(ChunkType::Compressed, 4 + compress_len)
};
self.chunk_header[0] = chunk_type as u8;
LE::write_uint(&mut self.chunk_header[1..], chunk_len as u64, 3);
LE::write_u32(&mut self.chunk_header[4..], checksum);
try!(self.w.write_all(&self.chunk_header));
if chunk_type == ChunkType::Compressed {
try!(self.w.write_all(&self.dst[0..compress_len]))
} else {
try!(self.w.write_all(src))
};
total += src.len();
}
Ok(total)
}
}
/// A reader for decompressing a Snappy stream.
///
/// This `Reader` wraps any other reader that implements `io::Read`. Bytes
/// read from this reader are decompressed using the
/// [Snappy frame format](https://github.com/google/snappy/blob/master/framing_format.txt)
/// (file extension `sz`, MIME type `application/x-snappy-framed`).
///
/// This reader can potentially make many small reads from the underlying
/// stream depending on its format, therefore, passing in a buffered reader
/// may be beneficial.
pub struct Reader<R: Read> {
/// The underlying reader.
r: R,
/// A Snappy decoder that we reuse that does the actual block based
/// decompression.
dec: Decoder,
/// The compressed bytes buffer, taken from the underlying reader.
src: Vec<u8>,
/// The decompressed bytes buffer. Bytes are decompressed from src to dst
/// before being passed back to the caller.
dst: Vec<u8>,
/// Index into dst: starting point of bytes not yet given back to caller.
dsts: usize,
/// Index into dst: ending point of bytes not yet given back to caller.
dste: usize,
/// Whether we've read the special stream header or not.
read_stream_ident: bool,
}
impl<R: Read> Reader<R> {
/// Create a new reader for streaming Snappy decompression.
pub fn new(rdr: R) -> Reader<R> {
Reader {
r: rdr,
dec: Decoder::new(),
src: vec![0; *MAX_COMPRESS_BLOCK_SIZE],
dst: vec![0; MAX_BLOCK_SIZE],
dsts: 0,
dste: 0,
read_stream_ident: false,
}
}
/// Gets a reference to the underlying reader in this decoder.
pub fn get_ref(&self) -> &R {
&self.r
}
}
impl<R: Read> Read for Reader<R> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
macro_rules! fail {
($err:expr) => {
return Err(io::Error::from($err));
}
}
loop {
if self.dsts < self.dste {
let len = cmp::min(self.dste - self.dsts, buf.len());
let dste = self.dsts.checked_add(len).unwrap();
buf[0..len].copy_from_slice(&self.dst[self.dsts..dste]);
self.dsts = dste;
return Ok(len);
}
if !try!(read_exact_eof(&mut self.r, &mut self.src[0..4])) {
return Ok(0);
}
let ty = ChunkType::from_u8(self.src[0]);
if !self.read_stream_ident {
if ty != Ok(ChunkType::Stream) {
fail!(Error::StreamHeader { byte: self.src[0] });
}
self.read_stream_ident = true;
}
let len64 = LE::read_uint(&self.src[1..4], 3);
if len64 > self.src.len() as u64 {
fail!(Error::UnsupportedChunkLength {
len: len64,
header: false,
});
}
let len = len64 as usize;
match ty {
Err(b) if 0x02 <= b && b <= 0x7F => {
// Spec says that chunk types 0x02-0x7F are reserved and
// conformant decoders must return an error.
fail!(Error::UnsupportedChunkType { byte: b });
}
Err(b) if 0x80 <= b && b <= 0xFD => {
// Spec says that chunk types 0x80-0xFD are reserved but
// skippable.
try!(self.r.read_exact(&mut self.src[0..len]));
}
Err(b) => {
// Can never happen. 0x02-0x7F and 0x80-0xFD are handled
// above in the error case. That leaves 0x00, 0x01, 0xFE
// and 0xFF, each of which correspond to one of the four
// defined chunk types.
unreachable!("BUG: unhandled chunk type: {}", b);
}
Ok(ChunkType::Padding) => {
// Just read and move on.
try!(self.r.read_exact(&mut self.src[0..len]));
}
Ok(ChunkType::Stream) => {
if len != STREAM_BODY.len() {
fail!(Error::UnsupportedChunkLength {
len: len64,
header: true,
})
}
try!(self.r.read_exact(&mut self.src[0..len]));
if &self.src[0..len] != STREAM_BODY {
fail!(Error::StreamHeaderMismatch {
bytes: self.src[0..len].to_vec(),
});
}
}
Ok(ChunkType::Uncompressed) => {
let expected_sum = try!(self.r.read_u32::<LE>());
let n = len - 4;
if n > self.dst.len() {
fail!(Error::UnsupportedChunkLength {
len: n as u64,
header: false,
});
}
try!(self.r.read_exact(&mut self.dst[0..n]));
let got_sum = crc32c_masked(&self.dst[0..n]);
if expected_sum != got_sum {
fail!(Error::Checksum {
expected: expected_sum,
got: got_sum,
});
}
self.dsts = 0;
self.dste = n;
}
Ok(ChunkType::Compressed) => {
let expected_sum = try!(self.r.read_u32::<LE>());
let sn = len - 4;
if sn > self.src.len() {
fail!(Error::UnsupportedChunkLength {
len: len64,
header: false,
});
}
try!(self.r.read_exact(&mut self.src[0..sn]));
let dn = try!(decompress_len(&self.src));
if dn > self.dst.len() {
fail!(Error::UnsupportedChunkLength {
len: dn as u64,
header: false,
});
}
try!(self.dec.decompress(
&self.src[0..sn], &mut self.dst[0..dn]));
let got_sum = crc32c_masked(&self.dst[0..dn]);
if expected_sum != got_sum {
fail!(Error::Checksum {
expected: expected_sum,
got: got_sum,
});
}
self.dsts = 0;
self.dste = dn;
}
}
}
}
}
// read_exact_eof is like Read::read_exact, except it converts an UnexpectedEof
// error to a bool of false.
//
// If no error occurred, then this returns true.
fn read_exact_eof<R: Read>(rdr: &mut R, buf: &mut [u8]) -> io::Result<bool> {
use std::io::ErrorKind::UnexpectedEof;
match rdr.read_exact(buf) {
Ok(()) => Ok(true),
Err(ref err) if err.kind() == UnexpectedEof => Ok(false),
Err(err) => Err(err),
}
}
fn crc32c_masked(buf: &[u8]) -> u32 {
// TODO(burntsushi): SSE 4.2 has a CRC32 instruction that is probably
// faster. Oh how I long for you, SIMD. See src/crc32.rs for a lamentation.
let sum = crc32c(buf);
(sum.wrapping_shr(15) | sum.wrapping_shl(17)).wrapping_add(0xA282EAD8)
}