1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License.. //! Temporal quantification. use core::cmp; use core::fmt; use core::ops::{Add, AddAssign, Sub, SubAssign}; use crate::error::Error; use crate::sys::time; use crate::sys_common::FromInner; use crate::sync::SgxThreadMutex; pub use core::time::Duration; /// A measurement of a monotonically nondecreasing clock. /// Opaque and useful only with `Duration`. /// /// Instants are always guaranteed to be no less than any previously measured /// instant when created, and are often useful for tasks such as measuring /// benchmarks or timing how long an operation takes. /// /// Note, however, that instants are not guaranteed to be **steady**. In other /// words, each tick of the underlying clock may not be the same length (e.g. /// some seconds may be longer than others). An instant may jump forwards or /// experience time dilation (slow down or speed up), but it will never go /// backwards. /// /// Instants are opaque types that can only be compared to one another. There is /// no method to get "the number of seconds" from an instant. Instead, it only /// allows measuring the duration between two instants (or comparing two /// instants). /// /// The size of an `Instant` struct may vary depending on the target operating /// system. /// #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct Instant(time::Instant); /// A measurement of the system clock, useful for talking to /// external entities like the file system or other processes. /// /// Distinct from the [`Instant`] type, this time measurement **is not /// monotonic**. This means that you can save a file to the file system, then /// save another file to the file system, **and the second file has a /// `SystemTime` measurement earlier than the first**. In other words, an /// operation that happens after another operation in real time may have an /// earlier `SystemTime`! /// /// Consequently, comparing two `SystemTime` instances to learn about the /// duration between them returns a [`Result`] instead of an infallible [`Duration`] /// to indicate that this sort of time drift may happen and needs to be handled. /// /// Although a `SystemTime` cannot be directly inspected, the [`UNIX_EPOCH`] /// constant is provided in this module as an anchor in time to learn /// information about a `SystemTime`. By calculating the duration from this /// fixed point in time, a `SystemTime` can be converted to a human-readable time, /// or perhaps some other string representation. /// /// The size of a `SystemTime` struct may vary depending on the target operating /// system. /// #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct SystemTime(time::SystemTime); /// An error returned from the `duration_since` and `elapsed` methods on /// `SystemTime`, used to learn how far in the opposite direction a system time /// lies. /// #[derive(Clone, Debug)] pub struct SystemTimeError(Duration); impl Instant { /// Returns an instant corresponding to "now". /// #[cfg(feature = "untrusted_time")] pub fn now() -> Instant { Instant::_now() } pub(crate) fn _now() -> Instant { let os_now = time::Instant::now(); // And here we come upon a sad state of affairs. The whole point of // `Instant` is that it's monotonically increasing. We've found in the // wild, however, that it's not actually monotonically increasing for // one reason or another. These appear to be OS and hardware level bugs, // and there's not really a whole lot we can do about them. Here's a // taste of what we've found: // // * #48514 - OpenBSD, x86_64 // * #49281 - linux arm64 and s390x // * #51648 - windows, x86 // * #56560 - windows, x86_64, AWS // * #56612 - windows, x86, vm (?) // * #56940 - linux, arm64 // * https://bugzilla.mozilla.org/show_bug.cgi?id=1487778 - a similar // Firefox bug // // It seems that this just happens a lot in the wild. // We're seeing panics across various platforms where consecutive calls // to `Instant::now`, such as via the `elapsed` function, are panicking // as they're going backwards. Placed here is a last-ditch effort to try // to fix things up. We keep a global "latest now" instance which is // returned instead of what the OS says if the OS goes backwards. // // To hopefully mitigate the impact of this, a few platforms are // whitelisted as "these at least haven't gone backwards yet". if time::Instant::actually_monotonic() { return Instant(os_now); } static LOCK: SgxThreadMutex = SgxThreadMutex::new(); static mut LAST_NOW: time::Instant = time::Instant::zero(); unsafe { let r = LOCK.lock(); let now = if r.is_ok() { let now = cmp::max(LAST_NOW, os_now); LAST_NOW = now; LOCK.unlock(); now } else { os_now }; Instant(now) } } /// Returns the amount of time elapsed from another instant to this one. /// /// # Panics /// /// This function will panic if `earlier` is later than `self`. /// pub fn duration_since(&self, earlier: Instant) -> Duration { self.0.checked_sub_instant(&earlier.0).expect("supplied instant is later than self") } /// Returns the amount of time elapsed from another instant to this one, /// or None if that instant is later than this one. /// pub fn checked_duration_since(&self, earlier: Instant) -> Option<Duration> { self.0.checked_sub_instant(&earlier.0) } /// Returns the amount of time elapsed from another instant to this one, /// or zero duration if that instant is later than this one. /// pub fn saturating_duration_since(&self, earlier: Instant) -> Duration { self.checked_duration_since(earlier).unwrap_or(Duration::new(0, 0)) } /// Returns the amount of time elapsed since this instant was created. /// /// # Panics /// /// This function may panic if the current time is earlier than this /// instant, which is something that can happen if an `Instant` is /// produced synthetically. /// #[cfg(feature = "untrusted_time")] pub fn elapsed(&self) -> Duration { Instant::now() - *self } /// Returns `Some(t)` where `t` is the time `self + duration` if `t` can be represented as /// `Instant` (which means it's inside the bounds of the underlying data structure), `None` /// otherwise. pub fn checked_add(&self, duration: Duration) -> Option<Instant> { self.0.checked_add_duration(&duration).map(Instant) } /// Returns `Some(t)` where `t` is the time `self - duration` if `t` can be represented as /// `Instant` (which means it's inside the bounds of the underlying data structure), `None` /// otherwise. pub fn checked_sub(&self, duration: Duration) -> Option<Instant> { self.0.checked_sub_duration(&duration).map(Instant) } /// Return a tup (sec, nsec) /// pub fn get_tup(&self) -> (i64, i64) { self.0.get_tup() } } impl Add<Duration> for Instant { type Output = Instant; /// # Panics /// /// This function may panic if the resulting point in time cannot be represented by the /// underlying data structure. See [`checked_add`] for a version without panic. /// /// [`checked_add`]: ../../std/time/struct.Instant.html#method.checked_add fn add(self, other: Duration) -> Instant { self.checked_add(other).expect("overflow when adding duration to instant") } } impl AddAssign<Duration> for Instant { fn add_assign(&mut self, other: Duration) { *self = *self + other; } } impl Sub<Duration> for Instant { type Output = Instant; fn sub(self, other: Duration) -> Instant { self.checked_sub(other).expect("overflow when subtracting duration from instant") } } impl SubAssign<Duration> for Instant { fn sub_assign(&mut self, other: Duration) { *self = *self - other; } } impl Sub<Instant> for Instant { type Output = Duration; fn sub(self, other: Instant) -> Duration { self.duration_since(other) } } impl fmt::Debug for Instant { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.0.fmt(f) } } impl SystemTime { /// An anchor in time which can be used to create new `SystemTime` instances or /// learn about where in time a `SystemTime` lies. /// /// This constant is defined to be "1970-01-01 00:00:00 UTC" on all systems with /// respect to the system clock. Using `duration_since` on an existing /// `SystemTime` instance can tell how far away from this point in time a /// measurement lies, and using `UNIX_EPOCH + duration` can be used to create a /// `SystemTime` instance to represent another fixed point in time. /// pub const UNIX_EPOCH: SystemTime = UNIX_EPOCH; /// Returns the system time corresponding to "now". /// #[cfg(feature = "untrusted_time")] pub fn now() -> SystemTime { SystemTime::_now() } pub(crate) fn _now() -> SystemTime { SystemTime(time::SystemTime::now()) } /// Returns the amount of time elapsed from an earlier point in time. /// /// This function may fail because measurements taken earlier are not /// guaranteed to always be before later measurements (due to anomalies such /// as the system clock being adjusted either forwards or backwards). /// [`Instant`] can be used to measure elapsed time without this risk of failure. /// /// If successful, [`Ok`]`(`[`Duration`]`)` is returned where the duration represents /// the amount of time elapsed from the specified measurement to this one. /// /// Returns an [`Err`] if `earlier` is later than `self`, and the error /// contains how far from `self` the time is. /// /// [`Ok`]: ../../std/result/enum.Result.html#variant.Ok /// [`Duration`]: ../../std/time/struct.Duration.html /// [`Err`]: ../../std/result/enum.Result.html#variant.Err /// [`Instant`]: ../../std/time/struct.Instant.html /// pub fn duration_since(&self, earlier: SystemTime) -> Result<Duration, SystemTimeError> { self.0.sub_time(&earlier.0).map_err(SystemTimeError) } /// Returns the difference between the clock time when this /// system time was created, and the current clock time. /// /// This function may fail as the underlying system clock is susceptible to /// drift and updates (e.g., the system clock could go backwards), so this /// function may not always succeed. If successful, [`Ok`]`(`[`Duration`]`)` is /// returned where the duration represents the amount of time elapsed from /// this time measurement to the current time. /// /// To measure elapsed time reliably, use [`Instant`] instead. /// /// Returns an [`Err`] if `self` is later than the current system time, and /// the error contains how far from the current system time `self` is. /// /// [`Ok`]: ../../std/result/enum.Result.html#variant.Ok /// [`Duration`]: ../../std/time/struct.Duration.html /// [`Err`]: ../../std/result/enum.Result.html#variant.Err /// [`Instant`]: ../../std/time/struct.Instant.html /// #[cfg(feature = "untrusted_time")] pub fn elapsed(&self) -> Result<Duration, SystemTimeError> { SystemTime::now().duration_since(*self) } /// Returns `Some(t)` where `t` is the time `self + duration` if `t` can be represented as /// `SystemTime` (which means it's inside the bounds of the underlying data structure), `None` /// otherwise. pub fn checked_add(&self, duration: Duration) -> Option<SystemTime> { self.0.checked_add_duration(&duration).map(SystemTime) } /// Returns `Some(t)` where `t` is the time `self - duration` if `t` can be represented as /// `SystemTime` (which means it's inside the bounds of the underlying data structure), `None` /// otherwise. pub fn checked_sub(&self, duration: Duration) -> Option<SystemTime> { self.0.checked_sub_duration(&duration).map(SystemTime) } /// Return a tup (sec, nsec) /// pub fn get_tup(&self) -> (i64, i64) { self.0.get_tup() } } impl Add<Duration> for SystemTime { type Output = SystemTime; /// # Panics /// /// This function may panic if the resulting point in time cannot be represented by the /// underlying data structure. See [`checked_add`] for a version without panic. /// /// [`checked_add`]: ../../std/time/struct.SystemTime.html#method.checked_add fn add(self, dur: Duration) -> SystemTime { self.checked_add(dur).expect("overflow when adding duration to instant") } } impl AddAssign<Duration> for SystemTime { fn add_assign(&mut self, other: Duration) { *self = *self + other; } } impl Sub<Duration> for SystemTime { type Output = SystemTime; fn sub(self, dur: Duration) -> SystemTime { self.checked_sub(dur).expect("overflow when subtracting duration from instant") } } impl SubAssign<Duration> for SystemTime { fn sub_assign(&mut self, other: Duration) { *self = *self - other; } } impl fmt::Debug for SystemTime { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.0.fmt(f) } } /// An anchor in time which can be used to create new `SystemTime` instances or /// learn about where in time a `SystemTime` lies. /// /// This constant is defined to be "1970-01-01 00:00:00 UTC" on all systems with /// respect to the system clock. Using `duration_since` on an existing /// [`SystemTime`] instance can tell how far away from this point in time a /// measurement lies, and using `UNIX_EPOCH + duration` can be used to create a /// [`SystemTime`] instance to represent another fixed point in time. /// /// [`SystemTime`]: ../../std/time/struct.SystemTime.html /// pub const UNIX_EPOCH: SystemTime = SystemTime(time::UNIX_EPOCH); impl SystemTimeError { /// Returns the positive duration which represents how far forward the /// second system time was from the first. /// /// A `SystemTimeError` is returned from the [`duration_since`] and [`elapsed`] /// methods of [`SystemTime`] whenever the second system time represents a point later /// in time than the `self` of the method call. /// /// [`duration_since`]: ../../std/time/struct.SystemTime.html#method.duration_since /// [`elapsed`]: ../../std/time/struct.SystemTime.html#method.elapsed /// [`SystemTime`]: ../../std/time/struct.SystemTime.html /// pub fn duration(&self) -> Duration { self.0 } } impl Error for SystemTimeError { fn description(&self) -> &str { "other time was not earlier than self" } } impl fmt::Display for SystemTimeError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "second time provided was later than self") } } impl FromInner<time::SystemTime> for SystemTime { fn from_inner(time: time::SystemTime) -> SystemTime { SystemTime(time) } }