1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License.. //! Native threads. use sgx_types::{sgx_thread_t, sgx_thread_self}; use sgx_trts::enclave::*; use core::any::Any; use core::sync::atomic::AtomicUsize; use core::sync::atomic::Ordering::SeqCst; #[cfg(feature = "thread")] use core::cell::UnsafeCell; #[cfg(feature = "thread")] use core::mem; use core::fmt; use core::num::NonZeroU64; use alloc_crate::sync::Arc; use alloc_crate::str; use crate::panic; use crate::panicking; use crate::sys_common::thread_info; use crate::sync::{SgxThreadMutex, SgxMutex, SgxCondvar}; use crate::time::Duration; #[cfg(feature = "thread")] use crate::sys::thread as imp; #[cfg(feature = "thread")] use crate::io; use crate::ffi::{CStr, CString}; #[cfg(feature = "thread")] use crate::sys_common::{AsInner, IntoInner}; #[macro_use] mod local; pub use self::local::{LocalKey, AccessError}; pub use self::local::statik::Key as __StaticLocalKeyInner; #[cfg(feature = "thread")] pub use self::local::fast::Key as __FastLocalKeyInner; #[cfg(feature = "thread")] pub use self::local::os::Key as __OsLocalKeyInner; //////////////////////////////////////////////////////////////////////////////// // Builder //////////////////////////////////////////////////////////////////////////////// /// Thread factory, which can be used in order to configure the properties of /// a new thread. /// /// Methods can be chained on it in order to configure it. /// /// The two configurations available are: /// /// - [`name`]: specifies an [associated name for the thread][naming-threads] /// - [`stack_size`]: specifies the [desired stack size for the thread][stack-size] /// /// The [`spawn`] method will take ownership of the builder and create an /// [`io::Result`] to the thread handle with the given configuration. /// /// The [`thread::spawn`] free function uses a `Builder` with default /// configuration and [`unwrap`]s its return value. /// /// You may want to use [`spawn`] instead of [`thread::spawn`], when you want /// to recover from a failure to launch a thread, indeed the free function will /// panic where the `Builder` method will return a [`io::Result`]. /// #[cfg(feature = "thread")] #[derive(Debug)] pub struct Builder { // A name for the thread-to-be, for identification in panic messages name: Option<String>, } #[cfg(feature = "thread")] impl Builder { /// Generates the base configuration for spawning a thread, from which /// configuration methods can be chained. /// pub fn new() -> Builder { if rsgx_get_thread_policy() != SgxThreadPolicy::Bound { panic!("The sgx thread policy must be Bound!"); } Builder { name: None } } /// Names the thread-to-be. Currently the name is used for identification /// only in panic messages. /// /// The name must not contain null bytes (`\0`). /// /// For more information about named threads, see /// [this module-level documentation][naming-threads]. /// pub fn name(mut self, name: String) -> Builder { self.name = Some(name); self } /// Spawns a new thread by taking ownership of the `Builder`, and returns an /// [`io::Result`] to its [`JoinHandle`]. /// /// The spawned thread may outlive the caller (unless the caller thread /// is the main thread; the whole process is terminated when the main /// thread finishes). The join handle can be used to block on /// termination of the child thread, including recovering its panics. /// /// For a more complete documentation see [`thread::spawn`][`spawn`]. /// /// # Errors /// /// Unlike the [`spawn`] free function, this method yields an /// [`io::Result`] to capture any failure to create the thread at /// the OS level. /// /// [`spawn`]: ../../std/thread/fn.spawn.html /// [`io::Result`]: ../../std/io/type.Result.html /// [`JoinHandle`]: ../../std/thread/struct.JoinHandle.html /// /// # Panics /// /// Panics if a thread name was set and it contained null bytes. /// pub fn spawn<F, T>(self, f: F) -> io::Result<JoinHandle<T>> where F: FnOnce() -> T, F: Send + 'static, T: Send + 'static, { unsafe { self.spawn_unchecked(f) } } pub unsafe fn spawn_unchecked<'a, F, T>(self, f: F) -> io::Result<JoinHandle<T>> where F: FnOnce() -> T, F: Send + 'a, T: Send + 'a, { let Builder { name } = self; let my_thread = SgxThread::new(name); let their_thread = my_thread.clone(); let my_packet : Arc<UnsafeCell<Option<Result<T>>>> = Arc::new(UnsafeCell::new(None)); let their_packet = my_packet.clone(); let main = move || { if let Some(name) = their_thread.cname() { imp::Thread::set_name(name); } thread_info::set(their_thread); #[cfg(feature = "backtrace")] let try_result = panic::catch_unwind(panic::AssertUnwindSafe(|| { crate::sys_common::backtrace::__rust_begin_short_backtrace(f) })); #[cfg(not(feature = "backtrace"))] let try_result = panic::catch_unwind(panic::AssertUnwindSafe(f)); *their_packet.get() = Some(try_result); }; Ok(JoinHandle(JoinInner { // `imp::Thread::new` takes a closure with a `'static` lifetime, since it's passed // through FFI or otherwise used with low-level threading primitives that have no // notion of or way to enforce lifetimes. // // As mentioned in the `Safety` section of this function's documentation, the caller of // this function needs to guarantee that the passed-in lifetime is sufficiently long // for the lifetime of the thread. // // Similarly, the `sys` implementation must guarantee that no references to the closure // exist after the thread has terminated, which is signaled by `Thread::join` // returning. native: Some(imp::Thread::new( mem::transmute::<Box<dyn FnOnce() + 'a>, Box<dyn FnOnce() + 'static>>(Box::new( main, )), )?), thread: my_thread, packet: Packet(my_packet), })) } } //////////////////////////////////////////////////////////////////////////////// // Free functions //////////////////////////////////////////////////////////////////////////////// /// Spawns a new thread, returning a [`JoinHandle`] for it. /// /// The join handle will implicitly *detach* the child thread upon being /// dropped. In this case, the child thread may outlive the parent (unless /// the parent thread is the main thread; the whole process is terminated when /// the main thread finishes). Additionally, the join handle provides a [`join`] /// method that can be used to join the child thread. If the child thread /// panics, [`join`] will return an [`Err`] containing the argument given to /// [`panic`]. /// /// This will create a thread using default parameters of [`Builder`], if you /// want to specify the stack size or the name of the thread, use this API /// instead. /// /// As you can see in the signature of `spawn` there are two constraints on /// both the closure given to `spawn` and its return value, let's explain them: /// /// - The `'static` constraint means that the closure and its return value /// must have a lifetime of the whole program execution. The reason for this /// is that threads can `detach` and outlive the lifetime they have been /// created in. /// Indeed if the thread, and by extension its return value, can outlive their /// caller, we need to make sure that they will be valid afterwards, and since /// we *can't* know when it will return we need to have them valid as long as /// possible, that is until the end of the program, hence the `'static` /// lifetime. /// - The [`Send`] constraint is because the closure will need to be passed /// *by value* from the thread where it is spawned to the new thread. Its /// return value will need to be passed from the new thread to the thread /// where it is `join`ed. /// As a reminder, the [`Send`] marker trait expresses that it is safe to be /// passed from thread to thread. [`Sync`] expresses that it is safe to have a /// reference be passed from thread to thread. /// /// # Panics /// /// Panics if the OS fails to create a thread; use [`Builder::spawn`] /// to recover from such errors. /// #[cfg(feature = "thread")] pub fn spawn<F, T>(f: F) -> JoinHandle<T> where F: FnOnce() -> T, F: Send + 'static, T: Send + 'static, { Builder::new().spawn(f).expect("failed to spawn thread") } /// Gets a handle to the thread that invokes it. /// pub fn current() -> SgxThread { thread_info::current_thread().expect("use of thread::current() need TCS policy is Bound") } /// Cooperatively gives up a timeslice to the OS scheduler. /// /// This is used when the programmer knows that the thread will have nothing /// to do for some time, and thus avoid wasting computing time. /// /// For example when polling on a resource, it is common to check that it is /// available, and if not to yield in order to avoid busy waiting. /// /// Thus the pattern of `yield`ing after a failed poll is rather common when /// implementing low-level shared resources or synchronization primitives. /// /// However programmers will usually prefer to use [`channel`]s, [`Condvar`]s, /// [`Mutex`]es or [`join`] for their synchronization routines, as they avoid /// thinking about thread scheduling. /// /// Note that [`channel`]s for example are implemented using this primitive. /// Indeed when you call `send` or `recv`, which are blocking, they will yield /// if the channel is not available. /// #[cfg(feature = "thread")] pub fn yield_now() { imp::Thread::yield_now() } /// Determines whether the current thread is unwinding because of panic. /// /// A common use of this feature is to poison shared resources when writing /// unsafe code, by checking `panicking` when the `drop` is called. /// /// This is usually not needed when writing safe code, as [`Mutex`es][Mutex] /// already poison themselves when a thread panics while holding the lock. /// /// This can also be used in multithreaded applications, in order to send a /// message to other threads warning that a thread has panicked (e.g., for /// monitoring purposes). /// pub fn panicking() -> bool { panicking::panicking() } /// Puts the current thread to sleep for at least the specified amount of time. /// /// The thread may sleep longer than the duration specified due to scheduling /// specifics or platform-dependent functionality. It will never sleep less. /// /// # Platform-specific behavior /// /// On Unix platforms, the underlying syscall may be interrupted by a /// spurious wakeup or signal handler. To ensure the sleep occurs for at least /// the specified duration, this function may invoke that system call multiple /// times. /// #[cfg(feature = "thread")] pub fn sleep_ms(ms: u32) { sleep(Duration::from_millis(ms as u64)) } /// Puts the current thread to sleep for at least the specified amount of time. /// /// The thread may sleep longer than the duration specified due to scheduling /// specifics or platform-dependent functionality. It will never sleep less. /// /// # Platform-specific behavior /// /// On Unix platforms, the underlying syscall may be interrupted by a /// spurious wakeup or signal handler. To ensure the sleep occurs for at least /// the specified duration, this function may invoke that system call multiple /// times. /// Platforms which do not support nanosecond precision for sleeping will /// have `dur` rounded up to the nearest granularity of time they can sleep for. /// #[cfg(feature = "thread")] pub fn sleep(dur: Duration) { imp::Thread::sleep(dur) } /// /// The rsgx_thread_self function returns the unique thread identification. /// /// # Description /// /// The function is a simple wrap of get_thread_data() provided in the tRTS, /// which provides a trusted thread unique identifier. /// /// # Requirements /// /// Library: libsgx_tstdc.a /// /// # Return value /// /// The return value cannot be NULL and is always valid as long as it is invoked by a thread inside the enclave. /// pub fn rsgx_thread_self() -> sgx_thread_t { unsafe { sgx_thread_self() } } /// /// The rsgx_thread_equal function compares two thread identifiers. /// /// # Description /// /// The function compares two thread identifiers provided by sgx_thread_ /// self to determine if the IDs refer to the same trusted thread. /// /// # Requirements /// /// Library: libsgx_tstdc.a /// /// # Return value /// /// **true** /// /// The two thread IDs are equal. /// pub fn rsgx_thread_equal(a: sgx_thread_t, b: sgx_thread_t) -> bool { a == b } pub fn current_td() -> SgxThreadData { unsafe { SgxThreadData::from_raw(rsgx_thread_self()) } } // constants for park/unpark const EMPTY: usize = 0; const PARKED: usize = 1; const NOTIFIED: usize = 2; /// Blocks unless or until the current thread's token is made available. /// /// A call to `park` does not guarantee that the thread will remain parked /// forever, and callers should be prepared for this possibility. /// /// # park and unpark /// /// Every thread is equipped with some basic low-level blocking support, via the /// [`thread::park`][`park`] function and [`thread::Thread::unpark`][`unpark`] /// method. [`park`] blocks the current thread, which can then be resumed from /// another thread by calling the [`unpark`] method on the blocked thread's /// handle. /// /// Conceptually, each [`Thread`] handle has an associated token, which is /// initially not present: /// /// * The [`thread::park`][`park`] function blocks the current thread unless or /// until the token is available for its thread handle, at which point it /// atomically consumes the token. It may also return *spuriously*, without /// consuming the token. [`thread::park_timeout`] does the same, but allows /// specifying a maximum time to block the thread for. /// /// * The [`unpark`] method on a [`Thread`] atomically makes the token available /// if it wasn't already. Because the token is initially absent, [`unpark`] /// followed by [`park`] will result in the second call returning immediately. /// /// In other words, each [`Thread`] acts a bit like a spinlock that can be /// locked and unlocked using `park` and `unpark`. /// /// Notice that being unblocked does not imply any synchronization with someone /// that unparked this thread, it could also be spurious. /// For example, it would be a valid, but inefficient, implementation to make both [`park`] and /// [`unpark`] return immediately without doing anything. /// /// The API is typically used by acquiring a handle to the current thread, /// placing that handle in a shared data structure so that other threads can /// find it, and then `park`ing in a loop. When some desired condition is met, another /// thread calls [`unpark`] on the handle. /// /// The motivation for this design is twofold: /// /// * It avoids the need to allocate mutexes and condvars when building new /// synchronization primitives; the threads already provide basic /// blocking/signaling. /// /// * It can be implemented very efficiently on many platforms. /// pub fn park() { let thread = current(); // If we were previously notified then we consume this notification and // return quickly. if thread.inner.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst).is_ok() { return; } // Otherwise we need to coordinate going to sleep let mut m = thread.inner.lock.lock().unwrap(); match thread.inner.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) { Ok(_) => {} Err(NOTIFIED) => { // We must read here, even though we know it will be `NOTIFIED`. // This is because `unpark` may have been called again since we read // `NOTIFIED` in the `compare_exchange` above. We must perform an // acquire operation that synchronizes with that `unpark` to observe // any writes it made before the call to unpark. To do that we must // read from the write it made to `state`. let old = thread.inner.state.swap(EMPTY, SeqCst); assert_eq!(old, NOTIFIED, "park state changed unexpectedly"); return; } // should consume this notification, so prohibit spurious wakeups in next park. Err(_) => panic!("inconsistent park state"), } loop { m = thread.inner.cvar.wait(m).unwrap(); match thread.inner.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst) { Ok(_) => return, // got a notification Err(_) => {} // spurious wakeup, go back to sleep } } } /// Use [`park_timeout`]. /// /// Blocks unless or until the current thread's token is made available or /// the specified duration has been reached (may wake spuriously). /// /// The semantics of this function are equivalent to [`park`] except /// that the thread will be blocked for roughly no longer than `dur`. This /// method should not be used for precise timing due to anomalies such as /// preemption or platform differences that may not cause the maximum /// amount of time waited to be precisely `ms` long. /// /// See the [park documentation][`park`] for more detail. /// /// [`park_timeout`]: fn.park_timeout.html /// [`park`]: ../../std/thread/fn.park.html pub fn park_timeout_ms(ms: u32) { park_timeout(Duration::from_millis(ms as u64)) } /// Blocks unless or until the current thread's token is made available or /// the specified duration has been reached (may wake spuriously). /// /// The semantics of this function are equivalent to [`park`][park] except /// that the thread will be blocked for roughly no longer than `dur`. This /// method should not be used for precise timing due to anomalies such as /// preemption or platform differences that may not cause the maximum /// amount of time waited to be precisely `dur` long. /// /// See the [park documentation][park] for more details. /// /// # Platform-specific behavior /// /// Platforms which do not support nanosecond precision for sleeping will have /// `dur` rounded up to the nearest granularity of time they can sleep for. /// /// # Examples /// /// Waiting for the complete expiration of the timeout: /// /// ```rust,no_run /// use std::thread::park_timeout; /// use std::time::{Instant, Duration}; /// /// let timeout = Duration::from_secs(2); /// let beginning_park = Instant::now(); /// /// let mut timeout_remaining = timeout; /// loop { /// park_timeout(timeout_remaining); /// let elapsed = beginning_park.elapsed(); /// if elapsed >= timeout { /// break; /// } /// println!("restarting park_timeout after {:?}", elapsed); /// timeout_remaining = timeout - elapsed; /// } /// ``` /// /// [park]: fn.park.html pub fn park_timeout(dur: Duration) { let thread = current(); // Like `park` above we have a fast path for an already-notified thread, and // afterwards we start coordinating for a sleep. // return quickly. if thread.inner.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst).is_ok() { return; } let m = thread.inner.lock.lock().unwrap(); match thread.inner.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) { Ok(_) => {} Err(NOTIFIED) => { // We must read again here, see `park`. let old = thread.inner.state.swap(EMPTY, SeqCst); assert_eq!(old, NOTIFIED, "park state changed unexpectedly"); return; } // should consume this notification, so prohibit spurious wakeups in next park. Err(_) => panic!("inconsistent park_timeout state"), } // Wait with a timeout, and if we spuriously wake up or otherwise wake up // from a notification we just want to unconditionally set the state back to // empty, either consuming a notification or un-flagging ourselves as // parked. let (_m, _result) = thread.inner.cvar.wait_timeout(m, dur).unwrap(); match thread.inner.state.swap(EMPTY, SeqCst) { NOTIFIED => {} // got a notification, hurray! PARKED => {} // no notification, alas n => panic!("inconsistent park_timeout state: {}", n), } } //////////////////////////////////////////////////////////////////////////////// // ThreadId //////////////////////////////////////////////////////////////////////////////// /// A unique identifier for a running thread. /// /// A `ThreadId` is an opaque object that has a unique value for each thread /// that creates one. `ThreadId`s are not guaranteed to correspond to a thread's /// system-designated identifier. A `ThreadId` can be retrieved from the [`id`] /// method on a [`Thread`]. /// /// # Examples /// /// ``` /// use std::thread; /// /// let other_thread = thread::spawn(|| { /// thread::current().id() /// }); /// /// let other_thread_id = other_thread.join().unwrap(); /// assert!(thread::current().id() != other_thread_id); /// ``` /// /// [`id`]: ../../std/thread/struct.Thread.html#method.id /// [`Thread`]: ../../std/thread/struct.Thread.html #[derive(Eq, PartialEq, Clone, Copy, Hash, Debug)] pub struct ThreadId(NonZeroU64); impl ThreadId { // Generate a new unique thread ID. fn new() -> ThreadId { // We never call `GUARD.init()`, so it is UB to attempt to // acquire this mutex reentrantly! static GUARD: SgxThreadMutex = SgxThreadMutex::new(); static mut COUNTER: u64 = 1; unsafe { let _ = GUARD.lock(); // If we somehow use up all our bits, panic so that we're not // covering up subtle bugs of IDs being reused. if COUNTER == crate::u64::MAX { panic!("failed to generate unique thread ID: bitspace exhausted"); } let id = COUNTER; COUNTER += 1; GUARD.unlock(); ThreadId(NonZeroU64::new(id).unwrap()) } } /// This returns a numeric identifier for the thread identified by this /// `ThreadId`. /// /// As noted in the documentation for the type itself, it is essentially an /// opaque ID, but is guaranteed to be unique for each thread. The returned /// value is entirely opaque -- only equality testing is stable. Note that /// it is not guaranteed which values new threads will return, and this may /// change across Rust versions. pub fn as_u64(&self) -> NonZeroU64 { self.0 } } //////////////////////////////////////////////////////////////////////////////// // Thread //////////////////////////////////////////////////////////////////////////////// /// The internal representation of a `Thread` handle struct Inner { name: Option<CString>, // Guaranteed to be UTF-8 id: ThreadId, // state for thread park/unpark state: AtomicUsize, lock: SgxMutex<()>, cvar: SgxCondvar, } /// A handle to a thread. /// #[derive(Clone)] pub struct SgxThread { inner: Arc<Inner>, } impl SgxThread { // Used only internally to construct a thread object without spawning // Panics if the name contains nuls. pub(crate) fn new(name: Option<String>) -> SgxThread { let cname = name.map(|n| CString::new(n).expect("thread name may not contain interior null bytes")); SgxThread { inner: Arc::new(Inner { name: cname, id: ThreadId::new(), state: AtomicUsize::new(EMPTY), lock: SgxMutex::new(()), cvar: SgxCondvar::new(), }), } } /// Atomically makes the handle's token available if it is not already. /// /// Every thread is equipped with some basic low-level blocking support, via /// the [`park`][park] function and the `unpark()` method. These can be /// used as a more CPU-efficient implementation of a spinlock. /// pub fn unpark(&self) { // To ensure the unparked thread will observe any writes we made // before this call, we must perform a release operation that `park` // can synchronize with. To do that we must write `NOTIFIED` even if // `state` is already `NOTIFIED`. That is why this must be a swap // rather than a compare-and-swap that returns if it reads `NOTIFIED` // on failure. match self.inner.state.swap(NOTIFIED, SeqCst) { EMPTY => return, // no one was waiting NOTIFIED => return, // already unparked PARKED => {} // gotta go wake someone up _ => panic!("inconsistent state in unpark"), } // There is a period between when the parked thread sets `state` to // `PARKED` (or last checked `state` in the case of a spurious wake // up) and when it actually waits on `cvar`. If we were to notify // during this period it would be ignored and then when the parked // thread went to sleep it would never wake up. Fortunately, it has // `lock` locked at this stage so we can acquire `lock` to wait until // it is ready to receive the notification. // // Releasing `lock` before the call to `notify_one` means that when the // parked thread wakes it doesn't get woken only to have to wait for us // to release `lock`. drop(self.inner.lock.lock().unwrap()); self.inner.cvar.notify_one() } /// Gets the thread's unique identifier. /// pub fn id(&self) -> ThreadId { self.inner.id } /// Gets the thread's name. /// /// For more information about named threads, see /// [this module-level documentation][naming-threads]. /// pub fn name(&self) -> Option<&str> { self.cname().map(|s| unsafe { str::from_utf8_unchecked(s.to_bytes()) }) } fn cname(&self) -> Option<&CStr> { self.inner.name.as_ref().map(|s| &**s) } } impl fmt::Debug for SgxThread { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("SgxThread").field("id", &self.id()).field("name", &self.name()).finish() } } //////////////////////////////////////////////////////////////////////////////// // JoinHandle //////////////////////////////////////////////////////////////////////////////// /// A specialized [`Result`] type for threads. /// /// Indicates the manner in which a thread exited. /// /// The value contained in the `Result::Err` variant /// is the value the thread panicked with; /// that is, the argument the `panic!` macro was called with. /// Unlike with normal errors, this value doesn't implement /// the [`Error`](crate::error::Error) trait. /// /// Thus, a sensible way to handle a thread panic is to either: /// 1. `unwrap` the `Result<T>`, propagating the panic /// 2. or in case the thread is intended to be a subsystem boundary /// that is supposed to isolate system-level failures, /// match on the `Err` variant and handle the panic in an appropriate way. /// /// A thread that completes without panicking is considered to exit successfully. /// pub type Result<T> = crate::result::Result<T, Box<dyn Any + Send + 'static>>; // This packet is used to communicate the return value between the child thread // and the parent thread. Memory is shared through the `Arc` within and there's // no need for a mutex here because synchronization happens with `join()` (the // parent thread never reads this packet until the child has exited). // // This packet itself is then stored into a `JoinInner` which in turns is placed // in `JoinHandle` and `JoinGuard`. Due to the usage of `UnsafeCell` we need to // manually worry about impls like Send and Sync. The type `T` should // already always be Send (otherwise the thread could not have been created) and // this type is inherently Sync because no methods take &self. Regardless, // however, we add inheriting impls for Send/Sync to this type to ensure it's // Send/Sync and that future modifications will still appropriately classify it. #[cfg(feature = "thread")] struct Packet<T>(Arc<UnsafeCell<Option<Result<T>>>>); #[cfg(feature = "thread")] unsafe impl<T: Send> Send for Packet<T> {} #[cfg(feature = "thread")] unsafe impl<T: Sync> Sync for Packet<T> {} /// Inner representation for JoinHandle #[cfg(feature = "thread")] struct JoinInner<T> { native: Option<imp::Thread>, thread: SgxThread, packet: Packet<T>, } #[cfg(feature = "thread")] impl<T> JoinInner<T> { fn join(&mut self) -> Result<T> { self.native.take().unwrap().join(); unsafe { (*self.packet.0.get()).take().unwrap() } } } /// An owned permission to join on a thread (block on its termination). /// /// A `JoinHandle` *detaches* the associated thread when it is dropped, which /// means that there is no longer any handle to thread and no way to `join` /// on it. /// /// Due to platform restrictions, it is not possible to [`Clone`] this /// handle: the ability to join a thread is a uniquely-owned permission. /// /// This `struct` is created by the [`thread::spawn`] function and the /// [`thread::Builder::spawn`] method. /// /// # Examples /// /// Creation from [`thread::spawn`]: /// /// ``` /// use std::thread; /// /// let join_handle: thread::JoinHandle<_> = thread::spawn(|| { /// // some work here /// }); /// ``` /// /// Creation from [`thread::Builder::spawn`]: /// /// ``` /// use std::thread; /// /// let builder = thread::Builder::new(); /// /// let join_handle: thread::JoinHandle<_> = builder.spawn(|| { /// // some work here /// }).unwrap(); /// ``` /// /// Child being detached and outliving its parent: /// /// ```no_run /// use std::thread; /// use std::time::Duration; /// /// let original_thread = thread::spawn(|| { /// let _detached_thread = thread::spawn(|| { /// // Here we sleep to make sure that the first thread returns before. /// thread::sleep(Duration::from_millis(10)); /// // This will be called, even though the JoinHandle is dropped. /// println!("♫ Still alive ♫"); /// }); /// }); /// /// original_thread.join().expect("The thread being joined has panicked"); /// println!("Original thread is joined."); /// /// // We make sure that the new thread has time to run, before the main /// // thread returns. /// /// thread::sleep(Duration::from_millis(1000)); /// ``` /// /// [`Clone`]: ../../std/clone/trait.Clone.html /// [`thread::spawn`]: fn.spawn.html /// [`thread::Builder::spawn`]: struct.Builder.html#method.spawn #[cfg(feature = "thread")] pub struct JoinHandle<T>(JoinInner<T>); #[cfg(feature = "thread")] unsafe impl<T> Send for JoinHandle<T> {} #[cfg(feature = "thread")] unsafe impl<T> Sync for JoinHandle<T> {} #[cfg(feature = "thread")] impl<T> JoinHandle<T> { /// Extracts a handle to the underlying thread. /// /// # Examples /// /// ``` /// use std::thread; /// /// let builder = thread::Builder::new(); /// /// let join_handle: thread::JoinHandle<_> = builder.spawn(|| { /// // some work here /// }).unwrap(); /// /// let thread = join_handle.thread(); /// println!("thread id: {:?}", thread.id()); /// ``` pub fn thread(&self) -> &SgxThread { &self.0.thread } /// Waits for the associated thread to finish. /// /// In terms of [atomic memory orderings], the completion of the associated /// thread synchronizes with this function returning. In other words, all /// operations performed by that thread are ordered before all /// operations that happen after `join` returns. /// /// If the child thread panics, [`Err`] is returned with the parameter given /// to [`panic`]. /// /// [`Err`]: ../../std/result/enum.Result.html#variant.Err /// [`panic`]: ../../std/macro.panic.html /// [atomic memory orderings]: ../../std/sync/atomic/index.html /// /// # Panics /// /// This function may panic on some platforms if a thread attempts to join /// itself or otherwise may create a deadlock with joining threads. /// /// # Examples /// /// ``` /// use std::thread; /// /// let builder = thread::Builder::new(); /// /// let join_handle: thread::JoinHandle<_> = builder.spawn(|| { /// // some work here /// }).unwrap(); /// join_handle.join().expect("Couldn't join on the associated thread"); /// ``` pub fn join(mut self) -> Result<T> { self.0.join() } } #[cfg(feature = "thread")] impl<T> AsInner<imp::Thread> for JoinHandle<T> { fn as_inner(&self) -> &imp::Thread { self.0.native.as_ref().unwrap() } } #[cfg(feature = "thread")] impl<T> IntoInner<imp::Thread> for JoinHandle<T> { fn into_inner(self) -> imp::Thread { self.0.native.unwrap() } } #[cfg(feature = "thread")] impl<T> fmt::Debug for JoinHandle<T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.pad("JoinHandle { .. }") } } #[cfg(feature = "thread")] fn _assert_sync_and_send() { fn _assert_both<T: Send + Sync>() {} _assert_both::<JoinHandle<()>>(); _assert_both::<SgxThread>(); }