1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License..
//! Utilities for random number generation
#![cfg_attr(all(feature = "trand", not(target_vendor = "teaclave")), no_std)]
#![cfg_attr(target_vendor = "teaclave", feature(rustc_private))]
#[cfg(all(feature = "trand", feature = "urand"))]
compile_error!("feature \"trand\" and feature \"urand\" cannot be enabled at the same time");
#[cfg(not(any(feature = "trand", feature = "urand")))]
compile_error!("need to enable feature \"trand\" or feature \"urand\"");
#[cfg(all(feature = "trand", not(target_vendor = "teaclave")))]
#[macro_use]
extern crate sgx_tstd as std;
#[cfg(feature = "trand")]
extern crate sgx_trts;
use std::boxed::Box;
use std::cell::RefCell;
use std::io;
use std::marker;
use std::num::Wrapping as w;
use std::rc::Rc;
use std::vec::Vec;
pub use os::RdRand;
#[cfg(feature = "derive")]
pub use sgx_rand_derive::Random;
pub use chacha::ChaChaRng;
pub use isaac::{Isaac64Rng, IsaacRng};
#[cfg(target_pointer_width = "64")]
use Isaac64Rng as IsaacWordRng;
#[cfg(target_pointer_width = "32")]
use IsaacRng as IsaacWordRng;
use distributions::range::SampleRange;
use distributions::{IndependentSample, Range};
pub mod chacha;
pub mod distributions;
pub mod isaac;
pub mod os;
pub mod read;
pub mod reseeding;
mod rand_impls;
#[allow(bad_style)]
type w64 = w<u64>;
#[allow(bad_style)]
type w32 = w<u32>;
/// A type that can be randomly generated using an `Rng`.
///
/// ## Built-in Implementations
///
/// This crate implements `Rand` for various primitive types. Assuming the
/// provided `Rng` is well-behaved, these implementations generate values with
/// the following ranges and distributions:
///
/// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed
/// over all values of the type.
/// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all
/// code points in the range `0...0x10_FFFF`, except for the range
/// `0xD800...0xDFFF` (the surrogate code points). This includes
/// unassigned/reserved code points.
/// * `bool`: Generates `false` or `true`, each with probability 0.5.
/// * Floating point types (`f32` and `f64`): Uniformly distributed in the
/// half-open range `[0, 1)`. (The [`Open01`], [`Closed01`], [`Exp1`], and
/// [`StandardNormal`] wrapper types produce floating point numbers with
/// alternative ranges or distributions.)
///
/// [`Open01`]: struct.Open01.html
/// [`Closed01`]: struct.Closed01.html
/// [`Exp1`]: struct.Exp1.html
/// [`StandardNormal`]: struct.StandardNormal.html
///
/// The following aggregate types also implement `Rand` as long as their
/// component types implement it:
///
/// * Tuples and arrays: Each element of the tuple or array is generated
/// independently, using its own `Rand` implementation.
/// * `Option<T>`: Returns `None` with probability 0.5; otherwise generates a
/// random `T` and returns `Some(T)`.
pub trait Rand: Sized {
/// Generates a random instance of this type using the specified source of
/// randomness.
fn rand<R: Rng>(rng: &mut R) -> Self;
}
/// A random number generator.
pub trait Rng {
/// Return the next random u32.
///
/// This rarely needs to be called directly, prefer `r.gen()` to
/// `r.next_u32()`.
// FIXME #rust-lang/rfcs#628: Should be implemented in terms of next_u64
fn next_u32(&mut self) -> u32;
/// Return the next random u64.
///
/// By default this is implemented in terms of `next_u32`. An
/// implementation of this trait must provide at least one of
/// these two methods. Similarly to `next_u32`, this rarely needs
/// to be called directly, prefer `r.gen()` to `r.next_u64()`.
fn next_u64(&mut self) -> u64 {
((self.next_u32() as u64) << 32) | (self.next_u32() as u64)
}
/// Return the next random f32 selected from the half-open
/// interval `[0, 1)`.
///
/// This uses a technique described by Saito and Matsumoto at
/// MCQMC'08. Given that the IEEE floating point numbers are
/// uniformly distributed over [1,2), we generate a number in
/// this range and then offset it onto the range [0,1). Our
/// choice of bits (masking v. shifting) is arbitrary and
/// should be immaterial for high quality generators. For low
/// quality generators (ex. LCG), prefer bitshifting due to
/// correlation between sequential low order bits.
///
/// See:
/// A PRNG specialized in double precision floating point numbers using
/// an affine transition
/// <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/dSFMT.pdf>
/// <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/dSFMT-slide-e.pdf>
///
/// By default this is implemented in terms of `next_u32`, but a
/// random number generator which can generate numbers satisfying
/// the requirements directly can overload this for performance.
/// It is required that the return value lies in `[0, 1)`.
///
/// See `Closed01` for the closed interval `[0,1]`, and
/// `Open01` for the open interval `(0,1)`.
fn next_f32(&mut self) -> f32 {
const UPPER_MASK: u32 = 0x3F800000;
const LOWER_MASK: u32 = 0x7FFFFF;
let tmp = UPPER_MASK | (self.next_u32() & LOWER_MASK);
let result = f32::from_bits(tmp);
result - 1.0
}
/// Return the next random f64 selected from the half-open
/// interval `[0, 1)`.
///
/// By default this is implemented in terms of `next_u64`, but a
/// random number generator which can generate numbers satisfying
/// the requirements directly can overload this for performance.
/// It is required that the return value lies in `[0, 1)`.
///
/// See `Closed01` for the closed interval `[0,1]`, and
/// `Open01` for the open interval `(0,1)`.
fn next_f64(&mut self) -> f64 {
const UPPER_MASK: u64 = 0x3FF0000000000000;
const LOWER_MASK: u64 = 0xFFFFFFFFFFFFF;
let tmp = UPPER_MASK | (self.next_u64() & LOWER_MASK);
let result = f64::from_bits(tmp);
result - 1.0
}
/// Fill `dest` with random data.
///
/// This has a default implementation in terms of `next_u64` and
/// `next_u32`, but should be overridden by implementations that
/// offer a more efficient solution than just calling those
/// methods repeatedly.
///
/// This method does *not* have a requirement to bear any fixed
/// relationship to the other methods, for example, it does *not*
/// have to result in the same output as progressively filling
/// `dest` with `self.gen::<u8>()`, and any such behaviour should
/// not be relied upon.
///
/// This method should guarantee that `dest` is entirely filled
/// with new data, and may panic if this is impossible
/// (e.g. reading past the end of a file that is being used as the
/// source of randomness).
///
/// # Example
///
/// ```rust
/// use sgx_rand::{thread_rng, Rng};
///
/// let mut v = [0u8; 13579];
/// thread_rng().fill_bytes(&mut v);
/// println!("{:?}", &v[..]);
/// ```
fn fill_bytes(&mut self, dest: &mut [u8]) {
// this could, in theory, be done by transmuting dest to a
// [u64], but this is (1) likely to be undefined behaviour for
// LLVM, (2) has to be very careful about alignment concerns,
// (3) adds more `unsafe` that needs to be checked, (4)
// probably doesn't give much performance gain if
// optimisations are on.
let mut count = 0;
let mut num = 0;
for byte in dest.iter_mut() {
if count == 0 {
// we could micro-optimise here by generating a u32 if
// we only need a few more bytes to fill the vector
// (i.e. at most 4).
num = self.next_u64();
count = 8;
}
*byte = (num & 0xff) as u8;
num >>= 8;
count -= 1;
}
}
/// Return a random value of a `Rand` type.
///
/// # Example
///
/// ```rust
/// use sgx_rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let x: u32 = rng.gen();
/// println!("{}", x);
/// println!("{:?}", rng.gen::<(f64, bool)>());
/// ```
#[inline(always)]
fn gen<T: Rand>(&mut self) -> T
where
Self: Sized,
{
Rand::rand(self)
}
/// Return an iterator that will yield an infinite number of randomly
/// generated items.
///
/// # Example
///
/// ```
/// use sgx_rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let x = rng.gen_iter::<u32>().take(10).collect::<Vec<u32>>();
/// println!("{:?}", x);
/// println!("{:?}", rng.gen_iter::<(f64, bool)>().take(5)
/// .collect::<Vec<(f64, bool)>>());
/// ```
fn gen_iter<T: Rand>(&mut self) -> Generator<'_, T, Self>
where
Self: Sized,
{
Generator {
rng: self,
_marker: marker::PhantomData,
}
}
/// Generate a random value in the range [`low`, `high`).
///
/// This is a convenience wrapper around
/// `distributions::Range`. If this function will be called
/// repeatedly with the same arguments, one should use `Range`, as
/// that will amortize the computations that allow for perfect
/// uniformity, as they only happen on initialization.
///
/// # Panics
///
/// Panics if `low >= high`.
///
/// # Example
///
/// ```rust
/// use sgx_rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let n: u32 = rng.gen_range(0, 10);
/// println!("{}", n);
/// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64);
/// println!("{}", m);
/// ```
fn gen_range<T: PartialOrd + SampleRange>(&mut self, low: T, high: T) -> T
where
Self: Sized,
{
assert!(low < high, "Rng.gen_range called with low >= high");
Range::new(low, high).ind_sample(self)
}
/// Return a bool with a 1 in n chance of true
///
/// # Example
///
/// ```rust
/// use sgx_rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// println!("{}", rng.gen_weighted_bool(3));
/// ```
fn gen_weighted_bool(&mut self, n: u32) -> bool
where
Self: Sized,
{
n <= 1 || self.gen_range(0, n) == 0
}
/// Return an iterator of random characters from the set A-Z,a-z,0-9.
///
/// # Example
///
/// ```rust
/// use sgx_rand::{thread_rng, Rng};
///
/// let s: String = thread_rng().gen_ascii_chars().take(10).collect();
/// println!("{}", s);
/// ```
fn gen_ascii_chars(&mut self) -> AsciiGenerator<'_, Self>
where
Self: Sized,
{
AsciiGenerator { rng: self }
}
/// Return a random element from `values`.
///
/// Return `None` if `values` is empty.
///
/// # Example
///
/// ```
/// use sgx_rand::{thread_rng, Rng};
///
/// let choices = [1, 2, 4, 8, 16, 32];
/// let mut rng = thread_rng();
/// println!("{:?}", rng.choose(&choices));
/// assert_eq!(rng.choose(&choices[..0]), None);
/// ```
fn choose<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T>
where
Self: Sized,
{
if values.is_empty() {
None
} else {
Some(&values[self.gen_range(0, values.len())])
}
}
/// Return a mutable pointer to a random element from `values`.
///
/// Return `None` if `values` is empty.
fn choose_mut<'a, T>(&mut self, values: &'a mut [T]) -> Option<&'a mut T>
where
Self: Sized,
{
if values.is_empty() {
None
} else {
let len = values.len();
Some(&mut values[self.gen_range(0, len)])
}
}
/// Shuffle a mutable slice in place.
///
/// This applies Durstenfeld's algorithm for the [Fisher�CYates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
/// which produces an unbiased permutation.
///
/// # Example
///
/// ```rust
/// use sgx_rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let mut y = [1, 2, 3];
/// rng.shuffle(&mut y);
/// println!("{:?}", y);
/// rng.shuffle(&mut y);
/// println!("{:?}", y);
/// ```
fn shuffle<T>(&mut self, values: &mut [T])
where
Self: Sized,
{
let mut i = values.len();
while i >= 2 {
// invariant: elements with index >= i have been locked in place.
i -= 1;
// lock element i in place.
values.swap(i, self.gen_range(0, i + 1));
}
}
}
impl<'a, R: ?Sized> Rng for &'a mut R
where
R: Rng,
{
fn next_u32(&mut self) -> u32 {
(**self).next_u32()
}
fn next_u64(&mut self) -> u64 {
(**self).next_u64()
}
fn next_f32(&mut self) -> f32 {
(**self).next_f32()
}
fn next_f64(&mut self) -> f64 {
(**self).next_f64()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
(**self).fill_bytes(dest)
}
}
impl<R: ?Sized> Rng for Box<R>
where
R: Rng,
{
fn next_u32(&mut self) -> u32 {
(**self).next_u32()
}
fn next_u64(&mut self) -> u64 {
(**self).next_u64()
}
fn next_f32(&mut self) -> f32 {
(**self).next_f32()
}
fn next_f64(&mut self) -> f64 {
(**self).next_f64()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
(**self).fill_bytes(dest)
}
}
/// Iterator which will generate a stream of random items.
///
/// This iterator is created via the [`gen_iter`] method on [`Rng`].
///
/// [`gen_iter`]: trait.Rng.html#method.gen_iter
/// [`Rng`]: trait.Rng.html
#[derive(Debug)]
pub struct Generator<'a, T, R: 'a> {
rng: &'a mut R,
_marker: marker::PhantomData<fn() -> T>,
}
impl<'a, T: Rand, R: Rng> Iterator for Generator<'a, T, R> {
type Item = T;
fn next(&mut self) -> Option<T> {
Some(self.rng.gen())
}
}
/// Iterator which will continuously generate random ascii characters.
///
/// This iterator is created via the [`gen_ascii_chars`] method on [`Rng`].
///
/// [`gen_ascii_chars`]: trait.Rng.html#method.gen_ascii_chars
/// [`Rng`]: trait.Rng.html
#[derive(Debug)]
pub struct AsciiGenerator<'a, R: 'a> {
rng: &'a mut R,
}
impl<'a, R: Rng> Iterator for AsciiGenerator<'a, R> {
type Item = char;
fn next(&mut self) -> Option<char> {
const GEN_ASCII_STR_CHARSET: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\
abcdefghijklmnopqrstuvwxyz\
0123456789";
Some(*self.rng.choose(GEN_ASCII_STR_CHARSET).unwrap() as char)
}
}
/// A random number generator that can be explicitly seeded to produce
/// the same stream of randomness multiple times.
pub trait SeedableRng<Seed>: Rng {
/// Reseed an RNG with the given seed.
///
/// # Example
///
/// ```rust
/// use sgx_rand::{Rng, SeedableRng, StdRng};
///
/// let seed: &[_] = &[1, 2, 3, 4];
/// let mut rng: StdRng = SeedableRng::from_seed(seed);
/// println!("{}", rng.gen::<f64>());
/// rng.reseed(&[5, 6, 7, 8]);
/// println!("{}", rng.gen::<f64>());
/// ```
fn reseed(&mut self, seed: Seed);
/// Create a new RNG with the given seed.
///
/// # Example
///
/// ```rust
/// use sgx_rand::{Rng, SeedableRng, StdRng};
///
/// let seed: &[_] = &[1, 2, 3, 4];
/// let mut rng: StdRng = SeedableRng::from_seed(seed);
/// println!("{}", rng.gen::<f64>());
/// ```
fn from_seed(seed: Seed) -> Self;
}
/// An Xorshift\[1\] random number
/// generator.
///
/// The Xorshift algorithm is not suitable for cryptographic purposes
/// but is very fast. If you do not know for sure that it fits your
/// requirements, use a more secure one such as `IsaacRng` or `RdRand`.
///
/// \[1\]: Marsaglia, George (July 2003). ["Xorshift
/// RNGs"](http://www.jstatsoft.org/v08/i14/paper). *Journal of
/// Statistical Software*. Vol. 8 (Issue 14).
#[allow(missing_copy_implementations)]
#[derive(Clone, Debug)]
pub struct XorShiftRng {
x: w32,
y: w32,
z: w32,
w: w32,
}
impl XorShiftRng {
/// Creates a new XorShiftRng instance which is not seeded.
///
/// The initial values of this RNG are constants, so all generators created
/// by this function will yield the same stream of random numbers. It is
/// highly recommended that this is created through `SeedableRng` instead of
/// this function
pub fn new_unseeded() -> XorShiftRng {
XorShiftRng {
x: w(0x193a6754),
y: w(0xa8a7d469),
z: w(0x97830e05),
w: w(0x113ba7bb),
}
}
}
impl Rng for XorShiftRng {
#[inline]
fn next_u32(&mut self) -> u32 {
let x = self.x;
let t = x ^ (x << 11);
self.x = self.y;
self.y = self.z;
self.z = self.w;
let w_ = self.w;
self.w = w_ ^ (w_ >> 19) ^ (t ^ (t >> 8));
self.w.0
}
}
impl SeedableRng<[u32; 4]> for XorShiftRng {
/// Reseed an XorShiftRng. This will panic if `seed` is entirely 0.
fn reseed(&mut self, seed: [u32; 4]) {
assert!(
!seed.iter().all(|&x| x == 0),
"XorShiftRng.reseed called with an all zero seed."
);
self.x = w(seed[0]);
self.y = w(seed[1]);
self.z = w(seed[2]);
self.w = w(seed[3]);
}
/// Create a new XorShiftRng. This will panic if `seed` is entirely 0.
fn from_seed(seed: [u32; 4]) -> XorShiftRng {
assert!(
!seed.iter().all(|&x| x == 0),
"XorShiftRng::from_seed called with an all zero seed."
);
XorShiftRng {
x: w(seed[0]),
y: w(seed[1]),
z: w(seed[2]),
w: w(seed[3]),
}
}
}
impl Rand for XorShiftRng {
fn rand<R: Rng>(rng: &mut R) -> XorShiftRng {
let mut tuple: (u32, u32, u32, u32) = rng.gen();
while tuple == (0, 0, 0, 0) {
tuple = rng.gen();
}
let (x, y, z, w_) = tuple;
XorShiftRng {
x: w(x),
y: w(y),
z: w(z),
w: w(w_),
}
}
}
/// A wrapper for generating floating point numbers uniformly in the
/// open interval `(0,1)` (not including either endpoint).
///
/// Use `Closed01` for the closed interval `[0,1]`, and the default
/// `Rand` implementation for `f32` and `f64` for the half-open
/// `[0,1)`.
///
/// # Example
/// ```rust
/// use sgx_rand::{random, Open01};
///
/// let Open01(val) = random::<Open01<f32>>();
/// println!("f32 from (0,1): {}", val);
/// ```
#[derive(Debug)]
pub struct Open01<F>(pub F);
/// A wrapper for generating floating point numbers uniformly in the
/// closed interval `[0,1]` (including both endpoints).
///
/// Use `Open01` for the closed interval `(0,1)`, and the default
/// `Rand` implementation of `f32` and `f64` for the half-open
/// `[0,1)`.
///
/// # Example
///
/// ```rust
/// use sgx_rand::{random, Closed01};
///
/// let Closed01(val) = random::<Closed01<f32>>();
/// println!("f32 from [0,1]: {}", val);
/// ```
#[derive(Debug)]
pub struct Closed01<F>(pub F);
/// The standard RNG. This is designed to be efficient on the current
/// platform.
#[derive(Copy, Clone, Debug)]
pub struct StdRng {
rng: IsaacWordRng,
}
impl StdRng {
/// Create a randomly seeded instance of `StdRng`.
///
/// This is a very expensive operation as it has to read
/// randomness from the operating system and use this in an
/// expensive seeding operation. If one is only generating a small
/// number of random numbers, or doesn't need the utmost speed for
/// generating each number, `thread_rng` and/or `random` may be more
/// appropriate.
///
/// Reading the randomness from the OS may fail, and any error is
/// propagated via the `io::Result` return value.
pub fn new() -> io::Result<StdRng> {
RdRand::new().map(|mut r| StdRng { rng: r.gen() })
}
}
impl Rng for StdRng {
#[inline]
fn next_u32(&mut self) -> u32 {
self.rng.next_u32()
}
#[inline]
fn next_u64(&mut self) -> u64 {
self.rng.next_u64()
}
}
impl<'a> SeedableRng<&'a [usize]> for StdRng {
fn reseed(&mut self, seed: &'a [usize]) {
// the internal RNG can just be seeded from the above
// randomness.
self.rng
.reseed(unsafe { &*(seed as *const [usize] as *const [u64]) })
}
fn from_seed(seed: &'a [usize]) -> StdRng {
StdRng {
rng: SeedableRng::from_seed(unsafe { &*(seed as *const [usize] as *const [u64]) }),
}
}
}
/// Create a weak random number generator with a default algorithm and seed.
///
/// It returns the fastest `Rng` algorithm currently available in Rust without
/// consideration for cryptography or security. If you require a specifically
/// seeded `Rng` for consistency over time you should pick one algorithm and
/// create the `Rng` yourself.
///
/// This will read randomness from the operating system to seed the
/// generator.
pub fn weak_rng() -> XorShiftRng {
match RdRand::new() {
Ok(mut r) => r.gen(),
Err(e) => panic!("weak_rng: failed to create seeded RNG: {:?}", e),
}
}
/// Controls how the thread-local RNG is reseeded.
#[derive(Debug)]
struct ThreadRngReseeder;
impl reseeding::Reseeder<StdRng> for ThreadRngReseeder {
fn reseed(&mut self, rng: &mut StdRng) {
*rng = match StdRng::new() {
Ok(r) => r,
Err(e) => panic!("could not reseed thread_rng: {}", e),
}
}
}
const THREAD_RNG_RESEED_THRESHOLD: u64 = 32_768;
type ThreadRngInner = reseeding::ReseedingRng<StdRng, ThreadRngReseeder>;
/// The thread-local RNG.
#[derive(Clone, Debug)]
pub struct ThreadRng {
rng: Rc<RefCell<ThreadRngInner>>,
}
/// Retrieve the lazily-initialized thread-local random number
/// generator, seeded by the system. Intended to be used in method
/// chaining style, e.g. `thread_rng().gen::<i32>()`.
///
/// The RNG provided will reseed itself from the operating system
/// after generating a certain amount of randomness.
///
/// The internal RNG used is platform and architecture dependent, even
/// if the operating system random number generator is rigged to give
/// the same sequence always. If absolute consistency is required,
/// explicitly select an RNG, e.g. `IsaacRng` or `Isaac64Rng`.
pub fn thread_rng() -> ThreadRng {
// used to make space in TLS for a random number generator
thread_local!(static THREAD_RNG_KEY: Rc<RefCell<ThreadRngInner>> = {
let r = match StdRng::new() {
Ok(r) => r,
Err(e) => panic!("could not initialize thread_rng: {}", e)
};
let rng = reseeding::ReseedingRng::new(r,
THREAD_RNG_RESEED_THRESHOLD,
ThreadRngReseeder);
Rc::new(RefCell::new(rng))
});
ThreadRng {
rng: THREAD_RNG_KEY.with(|t| t.clone()),
}
}
impl Rng for ThreadRng {
fn next_u32(&mut self) -> u32 {
self.rng.borrow_mut().next_u32()
}
fn next_u64(&mut self) -> u64 {
self.rng.borrow_mut().next_u64()
}
#[inline]
fn fill_bytes(&mut self, bytes: &mut [u8]) {
self.rng.borrow_mut().fill_bytes(bytes)
}
}
/// Generates a random value using the thread-local random number generator.
///
/// `random()` can generate various types of random things, and so may require
/// type hinting to generate the specific type you want.
///
/// This function uses the thread local random number generator. This means
/// that if you're calling `random()` in a loop, caching the generator can
/// increase performance. An example is shown below.
///
/// # Examples
///
/// ```
/// let x = sgx_rand::random::<u8>();
/// println!("{}", x);
///
/// let y = sgx_rand::random::<f64>();
/// println!("{}", y);
///
/// if sgx_rand::random() { // generates a boolean
/// println!("Better lucky than good!");
/// }
/// ```
///
/// Caching the thread local random number generator:
///
/// ```
/// use sgx_rand::Rng;
///
/// let mut v = vec![1, 2, 3];
///
/// for x in v.iter_mut() {
/// *x = sgx_rand::random()
/// }
///
/// // would be faster as
///
/// let mut rng = sgx_rand::thread_rng();
///
/// for x in v.iter_mut() {
/// *x = rng.gen();
/// }
/// ```
#[inline]
pub fn random<T: Rand>() -> T {
thread_rng().gen()
}
/// Randomly sample up to `amount` elements from a finite iterator.
/// The order of elements in the sample is not random.
///
/// # Example
///
/// ```rust
/// use sgx_rand::{thread_rng, sample};
///
/// let mut rng = thread_rng();
/// let sample = sample(&mut rng, 1..100, 5);
/// println!("{:?}", sample);
/// ```
pub fn sample<T, I, R>(rng: &mut R, iterable: I, amount: usize) -> Vec<T>
where
I: IntoIterator<Item = T>,
R: Rng,
{
let mut iter = iterable.into_iter();
let mut reservoir: Vec<T> = iter.by_ref().take(amount).collect();
// continue unless the iterator was exhausted
if reservoir.len() == amount {
for (i, elem) in iter.enumerate() {
let k = rng.gen_range(0, i + 1 + amount);
if let Some(spot) = reservoir.get_mut(k) {
*spot = elem;
}
}
}
reservoir
}