```  1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
```
```// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//
// Unless required by applicable law or agreed to in writing,
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations

//! The exponential distribution.

use crate::{Rng, Rand};
use crate::distributions::{ziggurat, ziggurat_tables, Sample, IndependentSample};

/// A wrapper around an `f64` to generate Exp(1) random numbers.
///
/// See `Exp` for the general exponential distribution.
///
/// Implemented via the ZIGNOR variant[1] of the Ziggurat method. The
/// exact description in the paper was adjusted to use tables for the
/// exponential distribution rather than normal.
///
/// [1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to
/// Generate Normal Random
/// Samples*](http://www.doornik.com/research/ziggurat.pdf). Nuffield
/// College, Oxford
///
/// # Example
///
/// ```rust
/// use sgx_rand::distributions::exponential::Exp1;
///
/// let Exp1(x) = sgx_rand::random();
/// println!("{}", x);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct Exp1(pub f64);

// This could be done via `-rng.gen::<f64>().ln()` but that is slower.
impl Rand for Exp1 {
#[inline]
fn rand<R:Rng>(rng: &mut R) -> Exp1 {
#[inline]
fn pdf(x: f64) -> f64 {
(-x).exp()
}
#[inline]
fn zero_case<R:Rng>(rng: &mut R, _u: f64) -> f64 {
ziggurat_tables::ZIG_EXP_R - rng.gen::<f64>().ln()
}

Exp1(ziggurat(rng, false,
&ziggurat_tables::ZIG_EXP_X,
&ziggurat_tables::ZIG_EXP_F,
pdf, zero_case))
}
}

/// The exponential distribution `Exp(lambda)`.
///
/// This distribution has density function: `f(x) = lambda *
/// exp(-lambda * x)` for `x > 0`.
///
/// # Example
///
/// ```rust
/// use sgx_rand::distributions::{Exp, IndependentSample};
///
/// let exp = Exp::new(2.0);
/// let v = exp.ind_sample(&mut sgx_rand::thread_rng());
/// println!("{} is from a Exp(2) distribution", v);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct Exp {
/// `lambda` stored as `1/lambda`, since this is what we scale by.
lambda_inverse: f64
}

impl Exp {
/// Construct a new `Exp` with the given shape parameter
/// `lambda`. Panics if `lambda <= 0`.
#[inline]
pub fn new(lambda: f64) -> Exp {
assert!(lambda > 0.0, "Exp::new called with `lambda` <= 0");
Exp { lambda_inverse: 1.0 / lambda }
}
}

impl Sample<f64> for Exp {
fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) }
}
impl IndependentSample<f64> for Exp {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
let Exp1(n) = rng.gen::<Exp1>();
n * self.lambda_inverse
}
}
```