1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
//! Module to compute the confusion matrix of a set of predictions.

use std::hash::Hash;
use std::collections::HashMap;
use linalg::Matrix;

/// Returns a square matrix C where C_ij is the count of the samples which were
/// predicted to lie in the class with jth label but actually lie in the class with
/// ith label.
///
/// # Arguments
/// * `predictions` - A series of model predictions.
/// * `targets`     - A slice of equal length to predictions, containing the
///                   target results.
/// * `labels`      - If None then the rows and columns of the returned matrix
///                   correspond to the distinct labels appearing in either
///                   predictions or targets, in increasing order.
///                   If Some then the rows and columns correspond to the provided
///                   labels, in the provided order. Note that in this case the
///                   confusion matrix will only contain entries for the elements
///                   of `labels`.
///
/// # Examples
/// ```
/// use rusty_machine::analysis::confusion_matrix::confusion_matrix;
/// use rusty_machine::linalg::Matrix;
///
/// let truth       = vec![2, 0, 2, 2, 0, 1];
/// let predictions = vec![0, 0, 2, 2, 0, 2];
///
/// let confusion = confusion_matrix(&predictions, &truth, None);
///
/// let expected = Matrix::new(3, 3, vec![
///     2, 0, 0,
///     0, 0, 1,
///     1, 0, 2]);
///
/// assert_eq!(confusion, expected);
/// ```
/// # Panics
///
/// - If user-provided labels are not distinct.
/// - If predictions and targets have different lengths.
pub fn confusion_matrix<T>(predictions: &[T],
                           targets: &[T],
                           labels: Option<Vec<T>>) -> Matrix<usize>
    where T: Ord + Eq + Hash + Copy
{
    assert!(predictions.len() == targets.len(),
        "predictions and targets have different lengths");

    let labels = match labels {
        Some(ls) => ls,
        None => ordered_distinct(predictions, targets)
    };

    let mut label_to_index: HashMap<T, usize> = HashMap::new();
    for (i, l) in labels.iter().enumerate() {
        match label_to_index.insert(*l, i) {
            None => {},
            Some(_) => { panic!("labels must be distinct"); }
        }
    }

    let mut counts = Matrix::new(labels.len(), labels.len(),
        vec![0usize; labels.len() * labels.len()]);

    for (truth, pred) in targets.iter().zip(predictions) {
        if label_to_index.contains_key(truth) && label_to_index.contains_key(pred) {
            let row = label_to_index[truth];
            let col = label_to_index[pred];

            counts[[row, col]] += 1;
        }
    }

    counts
}

fn ordered_distinct<T: Ord + Eq + Copy>(xs: &[T], ys: &[T]) -> Vec<T> {
    let mut ds: Vec<T> = xs.iter().chain(ys).cloned().collect();
    ds.sort();
    ds.dedup();
    ds
}

#[cfg(test)]
mod tests {
    use super::confusion_matrix;

    #[test]
    fn confusion_matrix_no_labels() {
        let truth       = vec![2, 0, 2, 2, 0, 1];
        let predictions = vec![0, 0, 2, 2, 0, 2];

        let confusion = confusion_matrix(&predictions, &truth, None);

        let expected = matrix!(2, 0, 0;
                               0, 0, 1;
                               1, 0, 2);

        assert_eq!(confusion, expected);
    }

    #[test]
    fn confusion_matrix_with_labels_a_permutation_of_classes() {
        let truth       = vec![2, 0, 2, 2, 0, 1];
        let predictions = vec![0, 0, 2, 2, 0, 2];

        let labels = vec![2, 1, 0];
        let confusion = confusion_matrix(&predictions, &truth, Some(labels));

        let expected = matrix!(2, 0, 1;
                               1, 0, 0;
                               0, 0, 2);

        assert_eq!(confusion, expected);
    }

    #[test]
    fn confusion_matrix_accepts_labels_intersecting_targets_and_disjoint_from_predictions() {
        let truth        = vec![2, 0, 2, 2, 3, 1];
        let predictions  = vec![0, 0, 2, 2, 0, 2];

        let labels = vec![1, 3];
        let confusion = confusion_matrix(&predictions, &truth, Some(labels));

        let expected = matrix!(0, 0;
                               0, 0);

        assert_eq!(confusion, expected);
    }

    #[test]
    fn confusion_matrix_accepts_labels_intersecting_predictions_and_disjoint_from_targets() {
        let truth       = vec![0, 0, 2, 2, 0, 2];
        let predictions = vec![2, 0, 2, 2, 3, 1];

        let labels = vec![1, 3];
        let confusion = confusion_matrix(&predictions, &truth, Some(labels));

        let expected = matrix!(0, 0;
                               0, 0);

        assert_eq!(confusion, expected);
    }

    #[test]
    fn confusion_matrix_accepts_labels_disjoint_from_predictions_and_targets() {
        let truth       = vec![0, 0, 2, 2, 0, 2];
        let predictions = vec![2, 0, 2, 2, 3, 1];

        let labels = vec![4, 5];
        let confusion = confusion_matrix(&predictions, &truth, Some(labels));

        let expected = matrix!(0, 0;
                               0, 0);

        assert_eq!(confusion, expected);
    }

    #[test]
    #[should_panic]
    fn confusion_matrix_rejects_duplicate_labels() {
        let truth       = vec![0, 0, 2, 2, 0, 2];
        let predictions = vec![2, 0, 2, 2, 3, 1];

        let labels = vec![1, 1];
        let _ = confusion_matrix(&predictions, &truth, Some(labels));
    }

    #[test]
    #[should_panic]
    fn confusion_matrix_rejects_mismatched_prediction_and_target_lengths() {
        let truth       = vec![0, 0, 2, 2, 0, 2];
        let predictions = vec![2, 0, 2, 2];
        let _ = confusion_matrix(&predictions, &truth, None);
    }
}