1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
//! The matrix module.
//!
//! Currently contains all code
//! relating to the matrix linear algebra struct.
//!
//! Most of the logic for manipulating matrices is generically implemented
//! via `BaseMatrix` and `BaseMatrixMut` trait.

use std;
use std::marker::PhantomData;
use libnum::Float;

use error::{Error, ErrorKind};
use vector::Vector;

use utils;

pub mod decomposition;
mod base;
mod deref;
mod impl_mat;
mod impl_ops;
mod iter;
mod mat_mul;
mod slice;
mod permutation_matrix;
mod impl_permutation_mul;

pub use self::base::{BaseMatrix, BaseMatrixMut};
pub use self::permutation_matrix::{PermutationMatrix, Parity};

/// Matrix dimensions
#[derive(Debug, Clone, Copy)]
pub enum Axes {
    /// The row axis.
    Row,
    /// The column axis.
    Col,
}

/// The `Matrix` struct.
///
/// Can be instantiated with any type.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct Matrix<T> {
    rows: usize,
    cols: usize,
    data: Vec<T>,
}

/// A `MatrixSlice`
///
/// This struct provides a slice into a matrix.
///
/// The struct contains the upper left point of the slice
/// and the width and height of the slice.
#[derive(Debug, Clone, Copy)]
pub struct MatrixSlice<'a, T: 'a> {
    ptr: *const T,
    rows: usize,
    cols: usize,
    row_stride: usize,
    marker: PhantomData<&'a T>,
}

/// A mutable `MatrixSliceMut`
///
/// This struct provides a mutable slice into a matrix.
///
/// The struct contains the upper left point of the slice
/// and the width and height of the slice.
#[derive(Debug)]
pub struct MatrixSliceMut<'a, T: 'a> {
    ptr: *mut T,
    rows: usize,
    cols: usize,
    row_stride: usize,
    marker: PhantomData<&'a mut T>,
}

/// Row of a matrix.
///
/// This struct points to a slice making up
/// a row in a matrix. You can deref this
/// struct to retrieve a `MatrixSlice` of
/// the row.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate rulinalg; fn main() {
/// use rulinalg::matrix::BaseMatrix;
///
/// let mat = matrix![1.0, 2.0;
///                   3.0, 4.0];
///
/// let row = mat.row(1);
/// assert_eq!((*row + 2.0).sum(), 11.0);
/// # }
/// ```
#[derive(Debug, Clone, Copy)]
pub struct Row<'a, T: 'a> {
    row: MatrixSlice<'a, T>,
}

/// Mutable row of a matrix.
///
/// This struct points to a mutable slice
/// making up a row in a matrix. You can deref
/// this struct to retrieve a `MatrixSlice`
/// of the row.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate rulinalg; fn main() {
/// use rulinalg::matrix::BaseMatrixMut;
///
/// let mut mat = matrix![1.0, 2.0;
///                       3.0, 4.0];
///
/// {
///     let mut row = mat.row_mut(1);
///     *row += 2.0;
/// }
/// let expected = matrix![1.0, 2.0;
///                        5.0, 6.0];
/// assert_matrix_eq!(mat, expected);
/// # }
/// ```
#[derive(Debug)]
pub struct RowMut<'a, T: 'a> {
    row: MatrixSliceMut<'a, T>,
}

/// Row iterator.
#[derive(Debug)]
pub struct Rows<'a, T: 'a> {
    slice_start: *const T,
    row_pos: usize,
    slice_rows: usize,
    slice_cols: usize,
    row_stride: isize,
    _marker: PhantomData<&'a T>,
}

/// Mutable row iterator.
#[derive(Debug)]
pub struct RowsMut<'a, T: 'a> {
    slice_start: *mut T,
    row_pos: usize,
    slice_rows: usize,
    slice_cols: usize,
    row_stride: isize,
    _marker: PhantomData<&'a mut T>,
}

// MAYBE WE SHOULD MOVE SOME OF THIS STUFF OUT

impl<'a, T: 'a> Row<'a, T> {
    /// Returns the row as a slice.
    pub fn raw_slice(&self) -> &'a [T] {
        unsafe { std::slice::from_raw_parts(self.row.as_ptr(), self.row.cols()) }
    }
}

impl<'a, T: 'a> RowMut<'a, T> {
    /// Returns the row as a slice.
    pub fn raw_slice(&self) -> &'a [T] {
        unsafe { std::slice::from_raw_parts(self.row.as_ptr(), self.row.cols()) }
    }

    /// Returns the row as a slice.
    pub fn raw_slice_mut(&mut self) -> &'a mut [T] {
        unsafe { std::slice::from_raw_parts_mut(self.row.as_mut_ptr(), self.row.cols()) }
    }
}

/// Column of a matrix.
///
/// This struct points to a `MatrixSlice`
/// making up a column in a matrix.
/// You can deref this struct to retrieve
/// the raw column `MatrixSlice`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate rulinalg; fn main() {
/// use rulinalg::matrix::BaseMatrix;
///
/// let mat = matrix![1.0, 2.0;
///                   3.0, 4.0];
///
/// let col = mat.col(1);
/// assert_eq!((*col + 2.0).sum(), 10.0);
/// # }
/// ```
#[derive(Debug, Clone, Copy)]
pub struct Column<'a, T: 'a> {
    col: MatrixSlice<'a, T>,
}

/// Mutable column of a matrix.
///
/// This struct points to a `MatrixSliceMut`
/// making up a column in a matrix.
/// You can deref this struct to retrieve
/// the raw column `MatrixSliceMut`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate rulinalg; fn main() {
/// use rulinalg::matrix::BaseMatrixMut;
///
/// let mut mat = matrix![1.0, 2.0;
///                   3.0, 4.0];
/// {
///     let mut column = mat.col_mut(1);
///     *column += 2.0;
/// }
/// let expected = matrix![1.0, 4.0;
///                        3.0, 6.0];
/// assert_matrix_eq!(mat, expected);
/// # }
/// ```
#[derive(Debug)]
pub struct ColumnMut<'a, T: 'a> {
    col: MatrixSliceMut<'a, T>,
}

/// Column iterator.
#[derive(Debug)]
pub struct Cols<'a, T: 'a> {
    _marker: PhantomData<&'a T>,
    col_pos: usize,
    row_stride: isize,
    slice_cols: usize,
    slice_rows: usize,
    slice_start: *const T,
}

/// Mutable column iterator.
#[derive(Debug)]
pub struct ColsMut<'a, T: 'a> {
    _marker: PhantomData<&'a mut T>,
    col_pos: usize,
    row_stride: isize,
    slice_cols: usize,
    slice_rows: usize,
    slice_start: *mut T,
}

/// Diagonal offset (used by Diagonal iterator).
#[derive(Debug, PartialEq)]
pub enum DiagOffset {
    /// The main diagonal of the matrix.
    Main,
    /// An offset above the main diagonal.
    Above(usize),
    /// An offset below the main diagonal.
    Below(usize),
}

/// An iterator over the diagonal elements of a matrix.
#[derive(Debug)]
pub struct Diagonal<'a, T: 'a, M: 'a + BaseMatrix<T>> {
    matrix: &'a M,
    diag_pos: usize,
    diag_end: usize,
    _marker: PhantomData<&'a T>,
}

/// An iterator over the mutable diagonal elements of a matrix.
#[derive(Debug)]
pub struct DiagonalMut<'a, T: 'a, M: 'a + BaseMatrixMut<T>> {
    matrix: &'a mut M,
    diag_pos: usize,
    diag_end: usize,
    _marker: PhantomData<&'a mut T>,
}

/// Iterator for matrix.
///
/// Iterates over the underlying slice data
/// in row-major order.
#[derive(Debug)]
pub struct SliceIter<'a, T: 'a> {
    slice_start: *const T,
    row_pos: usize,
    col_pos: usize,
    slice_rows: usize,
    slice_cols: usize,
    row_stride: usize,
    _marker: PhantomData<&'a T>,
}

/// Iterator for mutable matrix.
///
/// Iterates over the underlying slice data
/// in row-major order.
#[derive(Debug)]
pub struct SliceIterMut<'a, T: 'a> {
    slice_start: *mut T,
    row_pos: usize,
    col_pos: usize,
    slice_rows: usize,
    slice_cols: usize,
    row_stride: usize,
    _marker: PhantomData<&'a mut T>,
}

/// Solves the system Ux = y by back substitution.
///
/// Here U is an upper triangular matrix and y a vector
/// which is dimensionally compatible with U.
fn back_substitution<T, M>(u: &M, y: Vector<T>) -> Result<Vector<T>, Error>
    where T: Float,
          M: BaseMatrix<T>
{
    assert!(u.rows() == u.cols(), "Matrix U must be square.");
    assert!(y.size() == u.rows(),
        "Matrix and RHS vector must be dimensionally compatible.");
    let mut x = y;

    let n = u.rows();
    for i in (0 .. n).rev() {
        let row = u.row(i);

        // TODO: Remove unsafe once `get` is available in `BaseMatrix`
        let divisor = unsafe { u.get_unchecked([i, i]).clone() };
        if divisor.abs() < T::epsilon() {
            return Err(Error::new(ErrorKind::DivByZero,
                "Lower triangular matrix is singular to working precision."));
        }

        // We have
        // u[i, i] x[i] = b[i] - sum_j { u[i, j] * x[j] }
        // where j = i + 1, ..., (n - 1)
        //
        // Note that the right-hand side sum term can be rewritten as
        // u[i, (i + 1) .. n] * x[(i + 1) .. n]
        // where * denotes the dot product.
        // This is handy, because we have a very efficient
        // dot(., .) implementation!
        let dot = {
            let row_part = &row.raw_slice()[(i + 1) .. n];
            let x_part = &x.data()[(i + 1) .. n];
            utils::dot(row_part, x_part)
        };

        x[i] = (x[i] - dot) / divisor;
    }

    Ok(x)
}

/// Solves the system Lx = y by forward substitution.
///
/// Here, L is a square, lower triangular matrix and y
/// is a vector which is dimensionally compatible with L.
fn forward_substitution<T, M>(l: &M, y: Vector<T>) -> Result<Vector<T>, Error>
    where T: Float,
          M: BaseMatrix<T>
{
    assert!(l.rows() == l.cols(), "Matrix L must be square.");
    assert!(y.size() == l.rows(),
        "Matrix and RHS vector must be dimensionally compatible.");
    let mut x = y;

    for (i, row) in l.row_iter().enumerate() {
        // TODO: Remove unsafe once `get` is available in `BaseMatrix`
        let divisor = unsafe { l.get_unchecked([i, i]).clone() };
        if divisor.abs() < T::epsilon() {
            return Err(Error::new(ErrorKind::DivByZero,
                "Lower triangular matrix is singular to working precision."));
        }

        // We have
        // l[i, i] x[i] = b[i] - sum_j { l[i, j] * x[j] }
        // where j = 0, ..., i - 1
        //
        // Note that the right-hand side sum term can be rewritten as
        // l[i, 0 .. i] * x[0 .. i]
        // where * denotes the dot product.
        // This is handy, because we have a very efficient
        // dot(., .) implementation!
        let dot = {
            let row_part = &row.raw_slice()[0 .. i];
            let x_part = &x.data()[0 .. i];
            utils::dot(row_part, x_part)
        };

        x[i] = (x[i] - dot) / divisor;
    }
    Ok(x)
}

impl<'a, T> ColumnMut<'a, T> where T: Clone {
    /// Clones the elements of the given slice of compatible size
    /// into this column.
    ///
    /// # Panics
    /// - The slice does not have the same length as
    ///   the number of rows in the column.
    pub fn clone_from_slice(&mut self, slice: &[T]) {
        assert!(slice.len() == self.rows());
        let slice_iter = slice.iter().cloned();
        for (c, s) in self.iter_mut().zip(slice_iter) {
            *c = s;
        }
    }

    /// Clones the elements of this column into a
    /// slice of compatible size.
    ///
    /// # Panics
    /// - The slice does not have the same length as
    ///   the number of rows in the column.
    pub fn clone_into_slice(&self, slice: &mut [T]) {
        assert!(slice.len() == self.rows());
        let col_iter = self.iter().cloned();
        for (s, c) in slice.iter_mut().zip(col_iter) {
            *s = c;
        }
    }
}

impl<'a, T> Column<'a, T> where T: Clone {
    /// Clones the elements of this column into a
    /// slice of compatible size.
    ///
    /// # Panics
    /// - The slice does not have the same length as
    ///   the number of rows in the column.
    pub fn clone_into_slice(&self, slice: &mut [T]) {
        assert!(slice.len() == self.rows());
        let col_iter = self.iter().cloned();
        for (s, c) in slice.iter_mut().zip(col_iter) {
            *s = c;
        }
    }
}

#[cfg(test)]
mod tests {
    use matrix::{BaseMatrix, BaseMatrixMut};

    #[test]
    fn column_clone_into_slice() {
        let mat = matrix![1, 2;
                          3, 4];
        let mut v = vec![0, 0];
        mat.col(0).clone_into_slice(&mut v);
        assert_eq!(v, vec![1, 3]);
    }

    #[test]
    fn column_mut_clone_into_slice() {
        let mut mat = matrix![1, 2;
                          3, 4];
        let mut v = vec![0, 0];
        mat.col_mut(0).clone_into_slice(&mut v);
        assert_eq!(v, vec![1, 3]);
    }

    #[test]
    fn column_mut_clone_from_slice() {
        let mut mat = matrix![1, 2;
                              3, 4];
        let v = vec![5, 6];
        {
            let mut col = mat.col_mut(0);
            col.clone_from_slice(&v);
        }
        assert_matrix_eq!(mat, matrix![5, 2;
                                       6, 4]);
    }
}