1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
use matrix::{Matrix, BaseMatrix, BaseMatrixMut};
use matrix::{back_substitution};
use matrix::PermutationMatrix;
use vector::Vector;
use error::{Error, ErrorKind};

use std::any::Any;
use std::cmp;

use libnum::{Float, Zero, One};

use matrix::decomposition::Decomposition;

/// Result of unpacking an instance of
/// [PartialPivLu](struct.PartialPivLu.html).
#[derive(Debug, Clone)]
pub struct LUP<T> {
    /// The lower triangular matrix in the decomposition.
    pub l: Matrix<T>,
    /// The upper triangular matrix in the decomposition.
    pub u: Matrix<T>,
    /// The permutation matrix in the decomposition.
    pub p: PermutationMatrix<T>
}

/// LU decomposition with partial pivoting.
///
/// For any square matrix A, there exist a permutation matrix
/// `P`, a lower triangular matrix `L` and an upper triangular
/// matrix `U` such that
///
/// ```text
/// PA = LU.
/// ```
///
/// However, due to the way partial pivoting algorithms work,
/// LU decomposition with partial pivoting is in general
/// *only numerically stable for well-conditioned invertible matrices*.
///
/// That said, partial pivoting is sufficient in the vast majority
/// of practical applications, and it is also the fastest of the
/// pivoting schemes in existence.
///
///
/// # Applications
///
/// Given a matrix `x`, computing the LU(P) decomposition is simple:
///
/// ```
/// use rulinalg::matrix::decomposition::{PartialPivLu, LUP, Decomposition};
/// use rulinalg::matrix::Matrix;
///
/// let x = Matrix::<f64>::identity(4);
///
/// // The matrix is consumed and its memory
/// // re-purposed for the decomposition
/// let lu = PartialPivLu::decompose(x).expect("Matrix is invertible.");
///
/// // See below for applications
/// // ...
///
/// // The factors L, U and P can be obtained by unpacking the
/// // decomposition, for example by destructuring as seen here
/// let LUP { l, u, p } = lu.unpack();
///
/// ```
///
/// ## Solving linear systems
///
/// Arguably the most common use case of LU decomposition
/// is the computation of solutions to (multiple) linear systems
/// that share the same coefficient matrix.
///
/// ```
/// # #[macro_use] extern crate rulinalg;
/// # use rulinalg::matrix::decomposition::PartialPivLu;
/// # use rulinalg::matrix::Matrix;
/// # fn main() {
/// # let x = Matrix::identity(4);
/// # let lu = PartialPivLu::decompose(x).unwrap();
/// let b = vector![3.0, 4.0, 2.0, 1.0];
/// let y = lu.solve(b)
///           .expect("Matrix is invertible.");
/// assert_vector_eq!(y, vector![3.0, 4.0, 2.0, 1.0], comp = float);
///
/// // We can efficiently solve multiple such systems
/// let c = vector![0.0, 0.0, 0.0, 0.0];
/// let z = lu.solve(c).unwrap();
/// assert_vector_eq!(z, vector![0.0, 0.0, 0.0, 0.0], comp = float);
/// # }
/// ```
///
/// ## Computing the inverse of a matrix
///
/// The LU decomposition provides a convenient way to obtain
/// the inverse of the decomposed matrix. However, please keep
/// in mind that explicitly computing the inverse of a matrix
/// is *usually* a bad idea. In many cases, one might instead simply
/// solve multiple systems using `solve`.
///
/// For example, a common misconception is that when one needs
/// to solve multiple linear systems `Ax = b` for different `b`,
/// one should pre-compute the inverse of the matrix for efficiency.
/// In fact, this is practically never a good idea! A far more efficient
/// and accurate method is to perform the LU decomposition once, and
/// then solve each system as shown in the examples of the previous
/// subsection.
///
/// That said, there are definitely cases where an explicit inverse is
/// needed. In these cases, the inverse can easily be obtained
/// through the `inverse()` method.
///
/// # Computing the determinant of a matrix
///
/// Once the LU decomposition has been obtained, computing
/// the determinant of the decomposed matrix is a very cheap
/// operation.
///
/// ```
/// # #[macro_use] extern crate rulinalg;
/// # use rulinalg::matrix::decomposition::PartialPivLu;
/// # use rulinalg::matrix::Matrix;
/// # fn main() {
/// # let x = Matrix::<f64>::identity(4);
/// # let lu = PartialPivLu::decompose(x).unwrap();
/// assert_eq!(lu.det(), 1.0);
/// # }
/// ```
#[derive(Debug, Clone)]
pub struct PartialPivLu<T> {
    lu: Matrix<T>,
    p: PermutationMatrix<T>
}

impl<T: Clone + One + Zero> Decomposition for PartialPivLu<T> {
    type Factors = LUP<T>;

    fn unpack(self) -> LUP<T> {
        use internal_utils::nullify_lower_triangular_part;
        let l = unit_lower_triangular_part(&self.lu);
        let mut u = self.lu;
        nullify_lower_triangular_part(&mut u);

        LUP {
            l: l,
            u: u,
            p: self.p
        }
    }
}

impl<T: 'static + Float> PartialPivLu<T> {
    /// Performs the decomposition.
    ///
    /// # Panics
    ///
    /// The matrix must be square.
    ///
    /// # Errors
    ///
    /// An error will be returned if the matrix
    /// is singular to working precision (badly conditioned).
    pub fn decompose(matrix: Matrix<T>) -> Result<Self, Error> {
        let n = matrix.cols;
        assert!(matrix.rows == n, "Matrix must be square for LU decomposition.");
        let mut lu = matrix;
        let mut p = PermutationMatrix::identity(n);

        for index in 0..n {
            let mut curr_max_idx = index;
            let mut curr_max = lu[[curr_max_idx, curr_max_idx]];

            for i in (curr_max_idx+1)..n {
                if lu[[i, index]].abs() > curr_max.abs() {
                    curr_max = lu[[i, index]];
                    curr_max_idx = i;
                }
            }
            if curr_max.abs() < T::epsilon() {
                return Err(Error::new(ErrorKind::DivByZero,
                    "The matrix is too ill-conditioned for
                     LU decomposition with partial pivoting."));
            }

            lu.swap_rows(index, curr_max_idx);
            p.swap_rows(index, curr_max_idx);

            gaussian_elimination(&mut lu, index);
        }
        Ok(PartialPivLu {
            lu: lu,
            p: p.inverse()
        })
    }
}

// TODO: Remove Any bound (cannot for the time being, since
// back substitution uses Any bound)
impl<T> PartialPivLu<T> where T: Any + Float {
    /// Solves the linear system `Ax = b`.
    ///
    /// Here, `A` is the decomposed matrix satisfying
    /// `PA = LU`. Note that this method is particularly
    /// well suited to solving multiple such linear systems
    /// involving the same `A` but different `b`.
    ///
    /// # Errors
    ///
    /// If the matrix is very ill-conditioned, the function
    /// might fail to obtain the solution to the system.
    ///
    /// # Panics
    ///
    /// The right-hand side vector `b` must have compatible size.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate rulinalg;
    /// # use rulinalg::matrix::decomposition::PartialPivLu;
    /// # use rulinalg::matrix::Matrix;
    /// # fn main() {
    /// let x = Matrix::identity(4);
    /// let lu = PartialPivLu::decompose(x).unwrap();
    /// let b = vector![3.0, 4.0, 2.0, 1.0];
    /// let y = lu.solve(b)
    ///           .expect("Matrix is invertible.");
    /// assert_vector_eq!(y, vector![3.0, 4.0, 2.0, 1.0], comp = float);
    /// # }
    /// ```
    pub fn solve(&self, b: Vector<T>) -> Result<Vector<T>, Error> {
        assert!(b.size() == self.lu.rows(),
            "Right-hand side vector must have compatible size.");
        // Note that applying p here implicitly incurs a clone.
        // TODO: Is it possible to avoid the clone somehow?
        // To my knowledge, applying a permutation matrix
        // in-place in O(n) time requires O(n) storage for bookkeeping.
        // However, we might be able to get by with something like
        // O(n log n) for the permutation as the forward/backward
        // substitution algorithms are O(n^2), if this helps us
        // avoid the memory overhead.
        let b = lu_forward_substitution(&self.lu, &self.p * b);
        back_substitution(&self.lu, b)
    }

    /// Computes the inverse of the matrix which this LUP decomposition
    /// represents.
    ///
    /// # Errors
    /// The inversion might fail if the matrix is very ill-conditioned.
    pub fn inverse(&self) -> Result<Matrix<T>, Error> {
        let n = self.lu.rows();
        let mut inv = Matrix::zeros(n, n);
        let mut e = Vector::zeros(n);

        // To compute the inverse of a matrix A, note that
        // we can simply solve the system
        // AX = I,
        // where X is the inverse of A, and I is the identity
        // matrix of appropriate dimension.
        //
        // Note that this is not optimal in terms of performance,
        // and there is likely significant potential for improvement.
        //
        // A more performant technique is usually to compute the
        // triangular inverse of each of the L and U triangular matrices,
        // but this again requires efficient algorithms (blocked/recursive)
        // to invert triangular matrices, which at this point
        // we do not have available.

        // Solve for each column of the inverse matrix
        for i in 0 .. n {
            e[i] = T::one();

            let col = try!(self.solve(e));

            for j in 0 .. n {
                inv[[j, i]] = col[j];
            }

            e = col.apply(&|_| T::zero());
        }

        Ok(inv)
    }

    /// Computes the determinant of the decomposed matrix.
    ///
    /// Note that the determinant of an empty matrix is considered
    /// to be equal to 1.
    pub fn det(&self) -> T {
        // Recall that the determinant of a triangular matrix
        // is the product of its diagonal entries. Also,
        // the determinant of L is implicitly 1.
        let u_det = self.lu.diag().fold(T::one(), |x, &y| x * y);
        // Note that the determinant of P is equal to the
        // determinant of P^T, so we don't have to invert it
        let p_det = self.p.clone().det();
        p_det * u_det
    }
}

/// Result of unpacking an instance of
/// [FullPivLu](struct.FullPivLu.html).
///
/// PAQ = LU
#[derive(Debug, Clone)]
pub struct LUPQ<T> {
    /// The lower triangular matrix in the decomposition.
    pub l: Matrix<T>,

    /// The upper triangular matrix in the decomposition.
    pub u: Matrix<T>,

    /// The row-exchange permutation matrix in the decomposition.
    pub p: PermutationMatrix<T>,

    /// The column-exchange permutation matrix in the decomposition.
    pub q: PermutationMatrix<T>
}

/// LU decomposition with complete pivoting.
///
/// For any square matrix A, there exist two permutation matrices
/// `P` and `Q`, a lower triangular matrix `L` and an upper triangular
/// matrix `U` such that
///
/// ```text
/// PAQ = LU.
/// ```
///
/// Unlike the LU decomposition computed with partial pivoting, this
/// decomposition is stable for singular matrices. It is also a rank-
/// revealing decomposition.
///
/// See [PartialPivLu](decomposition/struct.PartialPivLu.html) for
/// applications of LU decompositions in general.
#[derive(Debug, Clone)]
pub struct FullPivLu<T> {
    lu: Matrix<T>,
    p: PermutationMatrix<T>,
    q: PermutationMatrix<T>
}

impl<T: Clone + One + Zero> Decomposition for FullPivLu<T> {
    type Factors = LUPQ<T>;

    fn unpack(self) -> LUPQ<T> {
        use internal_utils::nullify_lower_triangular_part;
        let l = unit_lower_triangular_part(&self.lu);
        let mut u = self.lu;
        nullify_lower_triangular_part(&mut u);

        LUPQ {
            l: l,
            u: u,
            p: self.p,
            q: self.q,
        }
    }
}

impl<T: 'static + Float> FullPivLu<T> {
    fn select_pivot(mat: &Matrix<T>, index: usize) -> (usize, usize, T) {
        let mut piv_row = index;
        let mut piv_col = index;
        let mut piv_val = mat[[index,index]];

        for row in index..mat.rows() {
            for col in index..mat.cols() {
                let val = mat[[row,col]];

                if val.abs() > piv_val.abs() {
                    piv_val = val;
                    piv_row = row;
                    piv_col = col;
                }
            }
        }

        (piv_row, piv_col, piv_val)
    }

    /// Performs the decomposition.
    pub fn decompose(matrix: Matrix<T>) -> Result<Self, Error> {
        assert!(
            matrix.rows() == matrix.cols(),
            "Matrix must be square for LU decomposition.");

        let mut lu = matrix;

        let nrows = lu.rows();
        let ncols = lu.cols();
        let diag_size = cmp::min(nrows, ncols);

        let mut p = PermutationMatrix::identity(nrows);
        let mut q = PermutationMatrix::identity(ncols);

        for index in 0..diag_size {
            // Select the current pivot. This is the largest value in
            // the bottom right corner of the matrix, starting at
            // (index, index).
            let (piv_row, piv_col, piv_val) = FullPivLu::select_pivot(&lu, index);

            if piv_val.abs() == T::zero() {
              break;
            }

            lu.swap_rows(index, piv_row);
            lu.swap_cols(index, piv_col);

            p.swap_rows(index, piv_row);

            // This is a little misleading, but even though
            // we're calling swap_rows here, since q is applied on the
            // right to A (i.e. P * A * Q), the result is a column swap of A.
            q.swap_rows(index, piv_col);

            // We've swapped the pivot row and column so that the pivot
            // ends up in the (index, index) position, so apply gaussian
            // elimination to the bottom-right corner.
            gaussian_elimination(&mut lu, index);
        }

        Ok(FullPivLu {
            lu: lu,
            p: p.inverse(),
            q: q.inverse()
        })
    }
}

// TODO: Remove Any bound (cannot for the time being, since
// back substitution uses Any bound)
impl<T> FullPivLu<T> where T: Any + Float {

    /// Solves the linear system `Ax = b`.
    ///
    /// Here, `A` is the decomposed matrix satisfying
    /// `PAQ = LU`. Note that this method is particularly
    /// well suited to solving multiple such linear systems
    /// involving the same `A` but different `b`.
    ///
    /// # Errors
    ///
    /// If the matrix is very ill-conditioned, the function
    /// might fail to obtain the solution to the system.
    ///
    /// # Panics
    ///
    /// The right-hand side vector `b` must have compatible size.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate rulinalg;
    /// # use rulinalg::matrix::decomposition::FullPivLu;
    /// # use rulinalg::matrix::Matrix;
    /// # fn main() {
    /// let x = Matrix::identity(4);
    /// let lu = FullPivLu::decompose(x).unwrap();
    /// let b = vector![3.0, 4.0, 2.0, 1.0];
    /// let y = lu.solve(b)
    ///           .expect("Matrix is invertible.");
    /// assert_vector_eq!(y, vector![3.0, 4.0, 2.0, 1.0], comp = float);
    /// # }
    /// ```
    pub fn solve(&self, b: Vector<T>) -> Result<Vector<T>, Error> {
        assert!(b.size() == self.lu.rows(),
            "Right-hand side vector must have compatible size.");

        let b = lu_forward_substitution(&self.lu, &self.p * b);
        back_substitution(&self.lu, b).map(|x| &self.q * x)
    }

    /// Computes the inverse of the matrix which this LUP decomposition
    /// represents.
    ///
    /// # Errors
    /// The inversion might fail if the matrix is very ill-conditioned.
    /// The inversion fails if the matrix is not invertible.
    pub fn inverse(&self) -> Result<Matrix<T>, Error> {
        let n = self.lu.rows();
        let mut inv = Matrix::zeros(n, n);
        let mut e = Vector::zeros(n);

        if !self.is_invertible() {
            return Err(
                Error::new(
                    ErrorKind::DivByZero,
                    "Non-invertible matrix found while attempting inversion"));
        }

        for i in 0 .. n {
            e[i] = T::one();

            let col = try!(self.solve(e));

            for j in 0 .. n {
                inv[[j, i]] = col[j];
            }

            e = col.apply(&|_| T::zero());
        }

        Ok(inv)
    }

    /// Computes the determinant of the decomposed matrix.
    ///
    /// Empty matrices are considered to have a determinant of 1.0.
    ///
    /// # Panics
    /// If the underlying matrix is non-square.
    pub fn det(&self) -> T {
        // Recall that the determinant of a triangular matrix
        // is the product of its diagonal entries. Also,
        // the determinant of L is implicitly 1.
        let u_det = self.lu.diag().fold(T::one(), |x, &y| x * y);

        // Note that the determinants of P and Q are equal to the
        // determinant of P^T and Q^T, so we don't have to invert them
        let p_det = self.p.clone().det();
        let q_det = self.q.clone().det();

        p_det * u_det * q_det
    }

    /// Computes the rank of the decomposed matrix.
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate rulinalg;
    /// # use rulinalg::matrix::decomposition::FullPivLu;
    /// # use rulinalg::matrix::Matrix;
    /// # fn main() {
    /// let x = matrix![1.0, 2.0, 3.0;
    ///                 4.0, 5.0, 6.0;
    ///                 5.0, 7.0, 9.0];
    /// let lu = FullPivLu::decompose(x).unwrap();
    /// assert_eq!(lu.rank(), 2);
    /// # }
    /// ```
    pub fn rank(&self) -> usize {
        let eps = self.epsilon();
        let mut rank = 0;

        for d in self.lu.diag() {
            if d.abs() > eps {
                rank = rank + 1;
            } else {
                break;
            }
        }

        rank
    }

    /// Returns whether the matrix is invertible.
    ///
    /// Empty matrices are considered to be invertible for
    /// the sake of this function.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate rulinalg;
    /// # use rulinalg::matrix::decomposition::FullPivLu;
    /// # use rulinalg::matrix::Matrix;
    /// # fn main() {
    /// let x = Matrix::<f64>::identity(4);
    /// let lu = FullPivLu::decompose(x).unwrap();
    /// assert!(lu.is_invertible());
    ///
    /// let y = matrix![1.0, 2.0, 3.0;
    ///                 4.0, 5.0, 6.0;
    ///                 5.0, 7.0, 9.0];
    /// let lu = FullPivLu::decompose(y).unwrap();
    /// assert!(!lu.is_invertible());
    /// # }
    /// ```
    pub fn is_invertible(&self) -> bool {
        let diag_size = cmp::min(self.lu.rows(), self.lu.cols());

        if diag_size > 0 {
            let diag_last = diag_size - 1;
            let last =
                unsafe { self.lu.get_unchecked([diag_last, diag_last]) };

            last.abs() > self.epsilon()
        } else {
            true
        }
    }

    fn epsilon(&self) -> T {
        self.lu.get([0, 0]).unwrap_or(&T::one()).abs() * T::epsilon()
    }
}

/// Performs Gaussian elimination in the lower-right hand corner starting at
/// (index, index).
fn gaussian_elimination<T: Float>(lu: &mut Matrix<T>, index: usize) {

    let piv_val = lu[[index, index]];

    for i in (index+1)..lu.rows() {
        let mult = lu[[i, index]] / piv_val;

        lu[[i, index]] = mult;

        for j in (index+1)..lu.cols() {
            lu[[i, j]] = lu[[i,j]] - mult*lu[[index, j]];
        }
    }
}

/// Performs forward substitution using the LU matrix
/// for which L has an implicit unit diagonal. That is,
/// the strictly lower triangular part of LU corresponds
/// to the strictly lower triangular part of L.
///
/// This is equivalent to solving the system Lx = b.
fn lu_forward_substitution<T: Float>(lu: &Matrix<T>, b: Vector<T>) -> Vector<T> {
    assert!(lu.rows() == lu.cols(), "LU matrix must be square.");
    assert!(b.size() == lu.rows(), "LU matrix and RHS vector must be compatible.");
    let mut x = b;

    for (i, row) in lu.row_iter().enumerate().skip(1) {
        // Note that at time of writing we need raw_slice here for
        // auto-vectorization to kick in
        let adjustment = row.raw_slice()
                            .iter()
                            .take(i)
                            .cloned()
                            .zip(x.iter().cloned())
                            .fold(T::zero(), |sum, (l, x)| sum + l * x);

        x[i] = x[i] - adjustment;
    }
    x
}

fn unit_lower_triangular_part<T, M>(matrix: &M) -> Matrix<T>
    where T: Zero + One + Clone, M: BaseMatrix<T> {

    let m = matrix.rows();
    let mut data = Vec::<T>::with_capacity(m * m);

    for (i, row) in matrix.row_iter().enumerate() {
        for element in row.iter().take(i).cloned() {
            data.push(element);
        }

        data.push(T::one());

        for _ in (i + 1) .. m {
            data.push(T::zero());
        }
    }

    Matrix::new(m, m, data)
}


impl<T> Matrix<T> where T: Any + Float
{
    /// Computes L, U, and P for LUP decomposition.
    ///
    /// Returns L,U, and P respectively.
    ///
    /// This function is deprecated.
    /// Please see [PartialPivLu](decomposition/struct.PartialPivLu.html)
    /// for a replacement.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate rulinalg; fn main() {
    /// use rulinalg::matrix::Matrix;
    ///
    /// let a = matrix![1.0, 2.0, 0.0;
    ///                 0.0, 3.0, 4.0;
    ///                 5.0, 1.0, 2.0];
    ///
    /// let (l, u, p) = a.lup_decomp().expect("This matrix should decompose!");
    /// # }
    /// ```
    ///
    /// # Panics
    ///
    /// - Matrix is not square.
    ///
    /// # Failures
    ///
    /// - Matrix cannot be LUP decomposed.
    #[deprecated]
    pub fn lup_decomp(self) -> Result<(Matrix<T>, Matrix<T>, Matrix<T>), Error> {
        let n = self.cols;
        assert!(self.rows == n, "Matrix must be square for LUP decomposition.");
        let mut l = Matrix::<T>::zeros(n, n);
        let mut u = self;
        let mut p = Matrix::<T>::identity(n);

        for index in 0..n {
            let mut curr_max_idx = index;
            let mut curr_max = u[[curr_max_idx, curr_max_idx]];

            for i in (curr_max_idx+1)..n {
                if u[[i, index]].abs() > curr_max.abs() {
                    curr_max = u[[i, index]];
                    curr_max_idx = i;
                }
            }
            if curr_max.abs() < T::epsilon() {
                return Err(Error::new(ErrorKind::DivByZero,
                    "Singular matrix found in LUP decomposition. \
                    A value in the diagonal of U == 0.0."));
            }

            if curr_max_idx != index {
                l.swap_rows(index, curr_max_idx);
                u.swap_rows(index, curr_max_idx);
                p.swap_rows(index, curr_max_idx);
            }
            l[[index, index]] = T::one();
            for i in (index+1)..n {
                let mult = u[[i, index]]/curr_max;
                l[[i, index]] = mult;
                u[[i, index]] = T::zero();
                for j in (index+1)..n {
                    u[[i, j]] = u[[i,j]] - mult*u[[index, j]];
                }
            }
        }
        Ok((l, u, p))
    }
}

#[cfg(test)]
mod tests {
    use matrix::{Matrix, PermutationMatrix};
    use testsupport::{is_lower_triangular, is_upper_triangular};

    use super::{PartialPivLu, LUP, FullPivLu, LUPQ};
    use matrix::decomposition::Decomposition;

    #[allow(deprecated)]
    #[test]
    #[should_panic]
    fn test_non_square_lup_decomp() {
        let a: Matrix<f64> = Matrix::ones(2, 3);

        let _ = a.lup_decomp();
    }

    #[allow(deprecated)]
    #[test]
    fn test_lup_decomp() {
        use error::ErrorKind;
        let a: Matrix<f64> = matrix![
            1., 2., 3., 4.;
            0., 0., 0., 0.;
            0., 0., 0., 0.;
            0., 0., 0., 0.
        ];

        match a.lup_decomp() {
            Err(e) => assert!(*e.kind() == ErrorKind::DivByZero),
            Ok(_) => panic!()
        }
    }

    #[test]
    fn partial_piv_lu_decompose_arbitrary() {
        // Since the LUP decomposition is not in general unique,
        // we can not test against factors directly, but
        // instead we must rely on the fact that the
        // matrices P, L and U together construct the
        // original matrix
        let x = matrix![ -3.0,   0.0,   4.0,   1.0;
                        -12.0,   5.0,  17.0,   1.0;
                         15.0,   0.0, -18.0,  -5.0;
                          6.0,  20.0, -10.0, -15.0 ];

        let LUP { l, u, p } = PartialPivLu::decompose(x.clone())
                                           .unwrap()
                                           .unpack();
        let y = p.inverse() * &l * &u;
        assert_matrix_eq!(x, y, comp = float);
        assert!(is_lower_triangular(&l));
        assert!(is_upper_triangular(&u));
    }

    #[test]
    pub fn partial_piv_lu_inverse_identity() {
        let lu = PartialPivLu::<f64> {
            lu: Matrix::identity(3),
            p: PermutationMatrix::identity(3)
        };

        let inv = lu.inverse().expect("Matrix is invertible.");

        assert_matrix_eq!(inv, Matrix::identity(3), comp = float);
    }

    #[test]
    pub fn partial_piv_lu_inverse_arbitrary_invertible_matrix() {
        let x = matrix![5.0, 0.0, 0.0, 1.0;
                        2.0, 2.0, 2.0, 1.0;
                        4.0, 5.0, 5.0, 5.0;
                        1.0, 6.0, 4.0, 5.0];

        let inv = matrix![1.85185185185185203e-01,   1.85185185185185175e-01, -7.40740740740740561e-02, -1.02798428206033007e-17;
                          1.66666666666666630e-01,   6.66666666666666519e-01, -6.66666666666666519e-01,  4.99999999999999833e-01;
                         -3.88888888888888840e-01,   1.11111111111111174e-01,  5.55555555555555358e-01, -4.99999999999999833e-01;
                          7.40740740740740838e-02,  -9.25925925925925819e-01,  3.70370370370370294e-01,  5.13992141030165006e-17];

        let lu = PartialPivLu::decompose(x).unwrap();

        assert_matrix_eq!(lu.inverse().unwrap(), inv, comp = float);
    }

    #[test]
    pub fn partial_piv_lu_det_identity() {
        let lu = PartialPivLu::<f64> {
            lu: Matrix::identity(3),
            p: PermutationMatrix::identity(3)
        };

        assert_eq!(lu.det(), 1.0);
    }

    #[test]
    pub fn partial_piv_lu_det_arbitrary_invertible_matrix() {
        let x = matrix![ 5.0,  0.0,  0.0,  1.0;
                         0.0,  2.0,  2.0,  1.0;
                        15.0,  4.0,  7.0, 10.0;
                         5.0,  2.0, 17.0, 32.0];

        let lu = PartialPivLu::decompose(x).unwrap();

        let expected_det = 149.99999999999997;
        assert_scalar_eq!(lu.det(), expected_det, comp = float);
    }

    #[test]
    pub fn partial_piv_lu_solve_arbitrary_matrix() {
        let x = matrix![ 5.0, 0.0, 0.0, 1.0;
                         2.0, 2.0, 2.0, 1.0;
                         4.0, 5.0, 5.0, 5.0;
                         1.0, 6.0, 4.0, 5.0 ];
        let b = vector![9.0, 16.0, 49.0, 45.0];
        let expected = vector![1.0, 2.0, 3.0, 4.0];

        let lu = PartialPivLu::decompose(x).unwrap();
        let y = lu.solve(b).unwrap();
        // Need to up the tolerance to take into account
        // numerical error. Ideally there'd be a more systematic
        // way to test this.
        assert_vector_eq!(y, expected, comp = ulp, tol = 100);
    }

    #[test]
    pub fn lu_forward_substitution() {
        use super::lu_forward_substitution;

        {
            let lu: Matrix<f64> = matrix![];
            let b = vector![];
            let x = lu_forward_substitution(&lu, b);
            assert!(x.size() == 0);
        }

        {
            let lu = matrix![3.0];
            let b = vector![1.0];
            let x = lu_forward_substitution(&lu, b);
            assert_eq!(x, vector![1.0]);
        }

        {
            let lu = matrix![3.0, 2.0;
                             2.0, 2.0];
            let b = vector![1.0, 2.0];
            let x = lu_forward_substitution(&lu, b);
            assert_eq!(x, vector![1.0, 0.0]);
        }
    }

    #[test]
    fn full_piv_lu_decompose_arbitrary() {
        // Since the LUP decomposition is not in general unique,
        // we can not test against factors directly, but
        // instead we must rely on the fact that the
        // matrices P, L and U together construct the
        // original matrix
        let x = matrix![ -3.0,   0.0,   4.0,   1.0;
                        -12.0,   5.0,  17.0,   1.0;
                         15.0,   0.0, -18.0,  -5.0;
                          6.0,  20.0, -10.0, -15.0 ];

        let LUPQ { l, u, p, q } = FullPivLu::decompose(x.clone())
                                           .unwrap()
                                           .unpack();

        let y = p.inverse() * &l * &u * q.inverse();

        assert_matrix_eq!(x, y, comp = float);
        assert!(is_lower_triangular(&l));
        assert!(is_upper_triangular(&u));
    }

    #[test]
    fn full_piv_lu_decompose_singular() {
        let x = matrix![ -3.0,   0.0,   4.0,   1.0;
                        -12.0,   5.0,  17.0,   1.0;
                         15.0,   0.0, -18.0,  -5.0;
                         -6.0,   0.0,   8.0,   2.0 ];

        let lu = FullPivLu::decompose(x.clone()).unwrap();

        assert_eq!(lu.rank(), 3);

        let LUPQ { l, u, p, q } = lu.unpack();

        let y = p.inverse() * &l * &u * q.inverse();

        assert_matrix_eq!(x, y, comp = float);
        assert!(is_lower_triangular(&l));
        assert!(is_upper_triangular(&u));
    }

    #[test]
    #[should_panic]
    fn full_piv_lu_decompose_rectangular() {
        let x = matrix![ -3.0,   0.0,   4.0;
                        -12.0,   5.0,  17.0;
                         15.0,   0.0, -18.0;
                         -6.0,   0.0,   20.0];
                         
        FullPivLu::decompose(x.clone()).unwrap();
    }

    #[test]
    pub fn full_piv_lu_solve_arbitrary_matrix() {
        let x = matrix![ 5.0, 0.0, 0.0, 1.0;
                         2.0, 2.0, 2.0, 1.0;
                         4.0, 5.0, 5.0, 5.0;
                         1.0, 6.0, 4.0, 5.0 ];
        let b = vector![9.0, 16.0, 49.0, 45.0];
        let expected = vector![1.0, 2.0, 3.0, 4.0];

        let lu = FullPivLu::decompose(x).unwrap();
        let y = lu.solve(b).unwrap();

        // Need to up the tolerance to take into account
        // numerical error. Ideally there'd be a more systematic
        // way to test this.
        assert_vector_eq!(y, expected, comp = ulp, tol = 100);
    }

    #[test]
    pub fn full_piv_lu_inverse_arbitrary_invertible_matrix() {
        let x = matrix![5.0, 0.0, 0.0, 1.0;
                        2.0, 2.0, 2.0, 1.0;
                        4.0, 5.0, 5.0, 5.0;
                        1.0, 6.0, 4.0, 5.0];

        let inv = matrix![1.85185185185185203e-01,   1.85185185185185175e-01, -7.40740740740740561e-02, -1.02798428206033007e-17;
                          1.66666666666666630e-01,   6.66666666666666519e-01, -6.66666666666666519e-01,  4.99999999999999833e-01;
                         -3.88888888888888840e-01,   1.11111111111111174e-01,  5.55555555555555358e-01, -4.99999999999999833e-01;
                          7.40740740740740838e-02,  -9.25925925925925819e-01,  3.70370370370370294e-01,  5.13992141030165006e-17];

        let lu = FullPivLu::decompose(x).unwrap();

        assert_matrix_eq!(lu.inverse().unwrap(), inv, comp = float);
    }

    #[test]
    pub fn full_piv_lu_inverse_noninvertible() {
        let x = matrix![5.0, 0.0, 1.0;
                        4.0, 5.0, 5.0;
                        9.0, 5.0, 6.0];

        let lu = FullPivLu::decompose(x).unwrap();

        assert!(lu.inverse().is_err());
    }

    #[test]
    pub fn full_piv_lu_empty_matrix() {
        use matrix::base::BaseMatrix;

        let x = Matrix::from_fn(0, 0, |_, _| 0.0);
        assert_eq!(x.rows(), 0);
        assert_eq!(x.cols(), 0);

        let lu = FullPivLu::decompose(x).unwrap();

        assert!(lu.is_invertible());
        assert_eq!(lu.rank(), 0);
        assert_eq!(lu.det(), 1.0);

        let inverse = lu.inverse().unwrap();
        assert_eq!(inverse.rows(), 0);
        assert_eq!(inverse.cols(), 0);

        let LUPQ { l, u, p, q } = lu.unpack();
        assert_eq!(l.rows(), 0);
        assert_eq!(l.cols(), 0);

        assert_eq!(u.rows(), 0);
        assert_eq!(u.cols(), 0);

        assert_eq!(p.size(), 0);
        assert_eq!(q.size(), 0);
    }
}