1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
use matrix::{Matrix, BaseMatrix, BaseMatrixMut, MatrixSlice, MatrixSliceMut};
use error::{Error, ErrorKind};

use std::any::Any;

use libnum::{Float};

impl<T: Any + Float> Matrix<T> {
    /// Returns H, where H is the upper hessenberg form.
    ///
    /// If the transformation matrix is also required, you should
    /// use `upper_hess_decomp`.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate rulinalg; fn main() {
    /// use rulinalg::matrix::Matrix;
    ///
    /// let a = matrix![2., 0., 1., 1.;
    ///                 2., 0., 1., 2.;
    ///                 1., 2., 0., 0.;
    ///                 2., 0., 1., 1.];
    /// let h = a.upper_hessenberg();
    ///
    /// println!("{:}", h.expect("Could not get upper Hessenberg form."));
    /// # }
    /// ```
    ///
    /// # Panics
    ///
    /// - The matrix is not square.
    ///
    /// # Failures
    ///
    /// - The matrix cannot be reduced to upper hessenberg form.
    pub fn upper_hessenberg(mut self) -> Result<Matrix<T>, Error> {
        let n = self.rows;
        assert!(n == self.cols,
                "Matrix must be square to produce upper hessenberg.");

        for i in 0..n - 2 {
            let h_holder_vec: Matrix<T>;
            {
                let lower_slice = MatrixSlice::from_matrix(&self, [i + 1, i], n - i - 1, 1);
                // Try to get the house holder transform - else map error and pass up.
                h_holder_vec = try!(Matrix::make_householder_vec(&lower_slice.iter()
                        .cloned()
                        .collect::<Vec<_>>())
                    .map_err(|_| {
                        Error::new(ErrorKind::DecompFailure,
                                   "Cannot compute upper Hessenberg form.")
                    }));
            }

            {
                // Apply holder on the left
                let mut block =
                    MatrixSliceMut::from_matrix(&mut self, [i + 1, i], n - i - 1, n - i);
                block -= &h_holder_vec * (h_holder_vec.transpose() * &block) *
                         (T::one() + T::one());
            }

            {
                // Apply holder on the right
                let mut block = MatrixSliceMut::from_matrix(&mut self, [0, i + 1], n, n - i - 1);
                block -= (&block * &h_holder_vec) * h_holder_vec.transpose() *
                         (T::one() + T::one());
            }

        }

        // Enforce upper hessenberg
        for i in 0..self.cols - 2 {
            for j in i + 2..self.rows {
                unsafe {
                    *self.get_unchecked_mut([j, i]) = T::zero();
                }
            }
        }

        Ok(self)
    }

    /// Returns (U,H), where H is the upper hessenberg form
    /// and U is the unitary transform matrix.
    ///
    /// Note: The current transform matrix seems broken...
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate rulinalg; fn main() {
    /// use rulinalg::matrix::BaseMatrix;
    ///
    /// let a = matrix![1., 2., 3.;
    ///                 4., 5., 6.;
    ///                 7., 8., 9.];
    ///
    /// // u is the transform, h is the upper hessenberg form.
    /// let (u, h) = a.clone().upper_hess_decomp().expect("This matrix should decompose!");
    ///
    /// assert_matrix_eq!(h, u.transpose() * a * u, comp = abs, tol = 1e-12);
    /// # }
    /// ```
    ///
    /// # Panics
    ///
    /// - The matrix is not square.
    ///
    /// # Failures
    ///
    /// - The matrix cannot be reduced to upper hessenberg form.
    pub fn upper_hess_decomp(self) -> Result<(Matrix<T>, Matrix<T>), Error> {
        let n = self.rows;
        assert!(n == self.cols,
                "Matrix must be square to produce upper hessenberg.");

        // First we form the transformation.
        let mut transform = Matrix::identity(n);

        for i in (0..n - 2).rev() {
            let h_holder_vec: Matrix<T>;
            {
                let lower_slice = MatrixSlice::from_matrix(&self, [i + 1, i], n - i - 1, 1);
                h_holder_vec = try!(Matrix::make_householder_vec(&lower_slice.iter()
                        .cloned()
                        .collect::<Vec<_>>())
                    .map_err(|_| {
                        Error::new(ErrorKind::DecompFailure, "Could not compute eigenvalues.")
                    }));
            }

            let mut trans_block =
                MatrixSliceMut::from_matrix(&mut transform, [i + 1, i + 1], n - i - 1, n - i - 1);
            trans_block -= &h_holder_vec * (h_holder_vec.transpose() * &trans_block) *
                           (T::one() + T::one());
        }

        // Now we reduce to upper hessenberg
        Ok((transform, try!(self.upper_hessenberg())))
    }
}

#[cfg(test)]
mod tests {
    use matrix::Matrix;

    #[test]
    #[should_panic]
    fn test_non_square_upper_hessenberg() {
        let a: Matrix<f64> = Matrix::ones(2, 3);

        let _ = a.upper_hessenberg();
    }

    #[test]
    #[should_panic]
    fn test_non_square_upper_hess_decomp() {
        let a: Matrix<f64> = Matrix::ones(2, 3);

        let _ = a.upper_hess_decomp();
    }
}