1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
/*!
# Overview

`once_cell` provides two new cell-like types, [`unsync::OnceCell`] and [`sync::OnceCell`]. A `OnceCell`
might store arbitrary non-`Copy` types, can be assigned to at most once and provides direct access
to the stored contents. The core API looks *roughly* like this (and there's much more inside, read on!):

```rust,ignore
impl<T> OnceCell<T> {
    fn new() -> OnceCell<T> { ... }
    fn set(&self, value: T) -> Result<(), T> { ... }
    fn get(&self) -> Option<&T> { ... }
}
```

Note that, like with [`RefCell`] and [`Mutex`], the `set` method requires only a shared reference.
Because of the single assignment restriction `get` can return a `&T` instead of `Ref<T>`
or `MutexGuard<T>`.

The `sync` flavor is thread-safe (that is, implements the [`Sync`] trait), while the `unsync` one is not.

[`unsync::OnceCell`]: unsync/struct.OnceCell.html
[`sync::OnceCell`]: sync/struct.OnceCell.html
[`RefCell`]: https://doc.rust-lang.org/std/cell/struct.RefCell.html
[`Mutex`]: https://doc.rust-lang.org/std/sync/struct.Mutex.html
[`Sync`]: https://doc.rust-lang.org/std/marker/trait.Sync.html

# Patterns

`OnceCell` might be useful for a variety of patterns.

## Safe Initialization of global data

```rust
use std::{env, io};

use once_cell::sync::OnceCell;

#[derive(Debug)]
pub struct Logger {
    // ...
}
static INSTANCE: OnceCell<Logger> = OnceCell::new();

impl Logger {
    pub fn global() -> &'static Logger {
        INSTANCE.get().expect("logger is not initialized")
    }

    fn from_cli(args: env::Args) -> Result<Logger, std::io::Error> {
       // ...
#      Ok(Logger {})
    }
}

fn main() {
    let logger = Logger::from_cli(env::args()).unwrap();
    INSTANCE.set(logger).unwrap();
    // use `Logger::global()` from now on
}
```

## Lazy initialized global data

This is essentially the `lazy_static!` macro, but without a macro.

```rust
use std::{sync::Mutex, collections::HashMap};

use once_cell::sync::OnceCell;

fn global_data() -> &'static Mutex<HashMap<i32, String>> {
    static INSTANCE: OnceCell<Mutex<HashMap<i32, String>>> = OnceCell::new();
    INSTANCE.get_or_init(|| {
        let mut m = HashMap::new();
        m.insert(13, "Spica".to_string());
        m.insert(74, "Hoyten".to_string());
        Mutex::new(m)
    })
}
```

There are also the [`sync::Lazy`] and [`unsync::Lazy`] convenience types to streamline this pattern:

```rust
use std::{sync::Mutex, collections::HashMap};
use once_cell::sync::Lazy;

static GLOBAL_DATA: Lazy<Mutex<HashMap<i32, String>>> = Lazy::new(|| {
    let mut m = HashMap::new();
    m.insert(13, "Spica".to_string());
    m.insert(74, "Hoyten".to_string());
    Mutex::new(m)
});

fn main() {
    println!("{:?}", GLOBAL_DATA.lock().unwrap());
}
```

[`sync::Lazy`]: sync/struct.Lazy.html
[`unsync::Lazy`]: unsync/struct.Lazy.html

## General purpose lazy evaluation

Unlike `lazy_static!`, `Lazy` works with local variables.

```rust
use once_cell::unsync::Lazy;

fn main() {
    let ctx = vec![1, 2, 3];
    let thunk = Lazy::new(|| {
        ctx.iter().sum::<i32>()
    });
    assert_eq!(*thunk, 6);
}
```

If you need a lazy field in a struct, you probably should use `OnceCell`
directly, because that will allow you to access `self` during initialization.

```rust
use std::{fs, path::PathBuf};

use once_cell::unsync::OnceCell;

struct Ctx {
    config_path: PathBuf,
    config: OnceCell<String>,
}

impl Ctx {
    pub fn get_config(&self) -> Result<&str, std::io::Error> {
        let cfg = self.config.get_or_try_init(|| {
            fs::read_to_string(&self.config_path)
        })?;
        Ok(cfg.as_str())
    }
}
```

## Building block

Naturally, it is  possible to build other abstractions on top of `OnceCell`.
For example, this is a `regex!` macro which takes a string literal and returns an
*expression* that evaluates to a `&'static Regex`:

```
macro_rules! regex {
    ($re:literal $(,)?) => {{
        static RE: once_cell::sync::OnceCell<regex::Regex> = once_cell::sync::OnceCell::new();
        RE.get_or_init(|| regex::Regex::new($re).unwrap())
    }};
}
```

This macro can be useful to avoid the "compile regex on every loop iteration" problem.

# Comparison with std

|`!Sync` types         | Access Mode            | Drawbacks                                     |
|----------------------|------------------------|-----------------------------------------------|
|`Cell<T>`             | `T`                    | requires `T: Copy` for `get`                  |
|`RefCell<T>`          | `RefMut<T>` / `Ref<T>` | may panic at runtime                          |
|`unsync::OnceCell<T>` | `&T`                   | assignable only once                          |

|`Sync` types          | Access Mode            | Drawbacks                                     |
|----------------------|------------------------|-----------------------------------------------|
|`AtomicT`             | `T`                    | works only with certain `Copy` types          |
|`Mutex<T>`            | `MutexGuard<T>`        | may deadlock at runtime, may block the thread |
|`sync::OnceCell<T>`   | `&T`                   | assignable only once, may block the thread    |

Technically, calling `get_or_init` will also cause a panic or a deadlock if it recursively calls
itself. However, because the assignment can happen only once, such cases should be more rare than
equivalents with `RefCell` and `Mutex`.

# Minimum Supported `rustc` Version

This crate's minimum supported `rustc` version is `1.31.1` (or `1.36.0` with the
`parking_lot` feature enabled).

If only the `std` feature is enabled, MSRV will be updated conservatively.
When using other features, like `parking_lot`, MSRV might be updated more frequently, up to the latest stable.
In both cases, increasing MSRV is *not* considered a semver-breaking change.

# Implementation details

The implementation is based on the [`lazy_static`](https://github.com/rust-lang-nursery/lazy-static.rs/)
and [`lazy_cell`](https://github.com/indiv0/lazycell/) crates and [`std::sync::Once`]. In some sense,
`once_cell` just streamlines and unifies those APIs.

To implement a sync flavor of `OnceCell`, this crates uses either a custom re-implementation of
`std::sync::Once` or `parking_lot::Mutex`. This is controlled by the `parking_lot` feature, which
is enabled by default. Performance is the same for both cases, but the `parking_lot` based `OnceCell<T>`
is smaller by up to 16 bytes.

This crate uses `unsafe`.

[`std::sync::Once`]: https://doc.rust-lang.org/std/sync/struct.Once.html

# F.A.Q.

**Should I use lazy_static or once_cell?**

To the first approximation, `once_cell` is both more flexible and more convenient than `lazy_static`
and should be preferred.

Unlike `once_cell`, `lazy_static` supports spinlock-based implementation of blocking which works with
`#![no_std]`.

`lazy_static` has received significantly more real world testing, but `once_cell` is also a widely
used crate.

**Should I use the sync or unsync flavor?**

Because Rust compiler checks thread safety for you, it's impossible to accidentally use `unsync` where
`sync` is required. So, use `unsync` in single-threaded code and `sync` in multi-threaded. It's easy
to switch between the two if code becomes multi-threaded later.

At the moment, `unsync` has an additional benefit that reentrant initialization causes a panic, which
might be easier to debug than a deadlock.

# Related crates

* [double-checked-cell](https://github.com/niklasf/double-checked-cell)
* [lazy-init](https://crates.io/crates/lazy-init)
* [lazycell](https://crates.io/crates/lazycell)
* [mitochondria](https://crates.io/crates/mitochondria)
* [lazy_static](https://crates.io/crates/lazy_static)

*/

#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(all(feature = "mesalock_sgx",
                not(target_env = "sgx")), no_std)]
#![cfg_attr(all(target_env = "sgx", target_vendor = "mesalock"), feature(rustc_private))]

#[cfg(all(feature = "mesalock_sgx", not(target_env = "sgx")))]
#[macro_use]
extern crate sgx_tstd as std;

#[cfg(feature = "std")]
#[cfg(feature = "parking_lot")]
#[path = "imp_pl.rs"]
mod imp;

#[cfg(feature = "std")]
#[cfg(not(feature = "parking_lot"))]
#[path = "imp_std.rs"]
mod imp;

pub mod unsync {
    use core::{
        cell::{Cell, UnsafeCell},
        fmt, mem,
        ops::{Deref, DerefMut},
    };

    #[cfg(feature = "std")]
    use std::panic::{RefUnwindSafe, UnwindSafe};

    /// A cell which can be written to only once. It is not thread safe.
    ///
    /// Unlike [`std::cell::RefCell`], a `OnceCell` provides simple `&`
    /// references to the contents.
    ///
    /// [`std::cell::RefCell`]: https://doc.rust-lang.org/std/cell/struct.RefCell.html
    ///
    /// # Example
    /// ```
    /// use once_cell::unsync::OnceCell;
    ///
    /// let cell = OnceCell::new();
    /// assert!(cell.get().is_none());
    ///
    /// let value: &String = cell.get_or_init(|| {
    ///     "Hello, World!".to_string()
    /// });
    /// assert_eq!(value, "Hello, World!");
    /// assert!(cell.get().is_some());
    /// ```
    pub struct OnceCell<T> {
        // Invariant: written to at most once.
        inner: UnsafeCell<Option<T>>,
    }

    // Similarly to a `Sync` bound on `sync::OnceCell`, we can use
    // `&unsync::OnceCell` to sneak a `T` through `catch_unwind`,
    // by initializing the cell in closure and extracting the value in the
    // `Drop`.
    #[cfg(feature = "std")]
    impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceCell<T> {}
    #[cfg(feature = "std")]
    impl<T: UnwindSafe> UnwindSafe for OnceCell<T> {}

    impl<T> Default for OnceCell<T> {
        fn default() -> Self {
            Self::new()
        }
    }

    impl<T: fmt::Debug> fmt::Debug for OnceCell<T> {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            match self.get() {
                Some(v) => f.debug_tuple("OnceCell").field(v).finish(),
                None => f.write_str("OnceCell(Uninit)"),
            }
        }
    }

    impl<T: Clone> Clone for OnceCell<T> {
        fn clone(&self) -> OnceCell<T> {
            let res = OnceCell::new();
            if let Some(value) = self.get() {
                match res.set(value.clone()) {
                    Ok(()) => (),
                    Err(_) => unreachable!(),
                }
            }
            res
        }
    }

    impl<T: PartialEq> PartialEq for OnceCell<T> {
        fn eq(&self, other: &Self) -> bool {
            self.get() == other.get()
        }
    }

    impl<T: Eq> Eq for OnceCell<T> {}

    impl<T> From<T> for OnceCell<T> {
        fn from(value: T) -> Self {
            OnceCell { inner: UnsafeCell::new(Some(value)) }
        }
    }

    impl<T> OnceCell<T> {
        /// Creates a new empty cell.
        pub const fn new() -> OnceCell<T> {
            OnceCell { inner: UnsafeCell::new(None) }
        }

        /// Gets a reference to the underlying value.
        ///
        /// Returns `None` if the cell is empty.
        pub fn get(&self) -> Option<&T> {
            // Safe due to `inner`'s invariant
            unsafe { &*self.inner.get() }.as_ref()
        }

        /// Gets a mutable reference to the underlying value.
        ///
        /// Returns `None` if the cell is empty.
        pub fn get_mut(&mut self) -> Option<&mut T> {
            // Safe because we have unique access
            unsafe { &mut *self.inner.get() }.as_mut()
        }

        /// Sets the contents of this cell to `value`.
        ///
        /// Returns `Ok(())` if the cell was empty and `Err(value)` if it was
        /// full.
        ///
        /// # Example
        /// ```
        /// use once_cell::unsync::OnceCell;
        ///
        /// let cell = OnceCell::new();
        /// assert!(cell.get().is_none());
        ///
        /// assert_eq!(cell.set(92), Ok(()));
        /// assert_eq!(cell.set(62), Err(62));
        ///
        /// assert!(cell.get().is_some());
        /// ```
        pub fn set(&self, value: T) -> Result<(), T> {
            let slot = unsafe { &*self.inner.get() };
            if slot.is_some() {
                return Err(value);
            }
            let slot = unsafe { &mut *self.inner.get() };
            // This is the only place where we set the slot, no races
            // due to reentrancy/concurrency are possible, and we've
            // checked that slot is currently `None`, so this write
            // maintains the `inner`'s invariant.
            *slot = Some(value);
            Ok(())
        }

        /// Gets the contents of the cell, initializing it with `f`
        /// if the cell was empty.
        ///
        /// # Panics
        ///
        /// If `f` panics, the panic is propagated to the caller, and the cell
        /// remains uninitialized.
        ///
        /// It is an error to reentrantly initialize the cell from `f`. Doing
        /// so results in a panic.
        ///
        /// # Example
        /// ```
        /// use once_cell::unsync::OnceCell;
        ///
        /// let cell = OnceCell::new();
        /// let value = cell.get_or_init(|| 92);
        /// assert_eq!(value, &92);
        /// let value = cell.get_or_init(|| unreachable!());
        /// assert_eq!(value, &92);
        /// ```
        pub fn get_or_init<F>(&self, f: F) -> &T
        where
            F: FnOnce() -> T,
        {
            enum Void {}
            match self.get_or_try_init(|| Ok::<T, Void>(f())) {
                Ok(val) => val,
                Err(void) => match void {},
            }
        }

        /// Gets the contents of the cell, initializing it with `f` if
        /// the cell was empty. If the cell was empty and `f` failed, an
        /// error is returned.
        ///
        /// # Panics
        ///
        /// If `f` panics, the panic is propagated to the caller, and the cell
        /// remains uninitialized.
        ///
        /// It is an error to reentrantly initialize the cell from `f`. Doing
        /// so results in a panic.
        ///
        /// # Example
        /// ```
        /// use once_cell::unsync::OnceCell;
        ///
        /// let cell = OnceCell::new();
        /// assert_eq!(cell.get_or_try_init(|| Err(())), Err(()));
        /// assert!(cell.get().is_none());
        /// let value = cell.get_or_try_init(|| -> Result<i32, ()> {
        ///     Ok(92)
        /// });
        /// assert_eq!(value, Ok(&92));
        /// assert_eq!(cell.get(), Some(&92))
        /// ```
        pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E>
        where
            F: FnOnce() -> Result<T, E>,
        {
            if let Some(val) = self.get() {
                return Ok(val);
            }
            let val = f()?;
            // Note that *some* forms of reentrant initialization might lead to
            // UB (see `reentrant_init` test). I believe that just removing this
            // `assert`, while keeping `set/get` would be sound, but it seems
            // better to panic, rather than to silently use an old value.
            assert!(self.set(val).is_ok(), "reentrant init");
            Ok(self.get().unwrap())
        }

        /// Takes the value out of this `OnceCell`, moving it back to an uninitialized state.
        ///
        /// Has no effect and returns `None` if the `OnceCell` hasn't been initialized.
        ///
        /// # Examples
        ///
        /// ```
        /// use once_cell::unsync::OnceCell;
        ///
        /// let mut cell: OnceCell<String> = OnceCell::new();
        /// assert_eq!(cell.take(), None);
        ///
        /// let mut cell = OnceCell::new();
        /// cell.set("hello".to_string()).unwrap();
        /// assert_eq!(cell.take(), Some("hello".to_string()));
        /// assert_eq!(cell.get(), None);
        /// ```
        pub fn take(&mut self) -> Option<T> {
            mem::replace(self, Self::default()).into_inner()
        }

        /// Consumes the `OnceCell`, returning the wrapped value.
        ///
        /// Returns `None` if the cell was empty.
        ///
        /// # Examples
        ///
        /// ```
        /// use once_cell::unsync::OnceCell;
        ///
        /// let cell: OnceCell<String> = OnceCell::new();
        /// assert_eq!(cell.into_inner(), None);
        ///
        /// let cell = OnceCell::new();
        /// cell.set("hello".to_string()).unwrap();
        /// assert_eq!(cell.into_inner(), Some("hello".to_string()));
        /// ```
        pub fn into_inner(self) -> Option<T> {
            // Because `into_inner` takes `self` by value, the compiler statically verifies
            // that it is not currently borrowed. So it is safe to move out `Option<T>`.
            self.inner.into_inner()
        }
    }

    /// A value which is initialized on the first access.
    ///
    /// # Example
    /// ```
    /// use once_cell::unsync::Lazy;
    ///
    /// let lazy: Lazy<i32> = Lazy::new(|| {
    ///     println!("initializing");
    ///     92
    /// });
    /// println!("ready");
    /// println!("{}", *lazy);
    /// println!("{}", *lazy);
    ///
    /// // Prints:
    /// //   ready
    /// //   initializing
    /// //   92
    /// //   92
    /// ```
    pub struct Lazy<T, F = fn() -> T> {
        cell: OnceCell<T>,
        init: Cell<Option<F>>,
    }

    #[cfg(feature = "std")]
    impl<T, F: RefUnwindSafe> RefUnwindSafe for Lazy<T, F> where OnceCell<T>: RefUnwindSafe {}

    impl<T: fmt::Debug, F> fmt::Debug for Lazy<T, F> {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            f.debug_struct("Lazy").field("cell", &self.cell).field("init", &"..").finish()
        }
    }

    impl<T, F> Lazy<T, F> {
        /// Creates a new lazy value with the given initializing function.
        ///
        /// # Example
        /// ```
        /// # fn main() {
        /// use once_cell::unsync::Lazy;
        ///
        /// let hello = "Hello, World!".to_string();
        ///
        /// let lazy = Lazy::new(|| hello.to_uppercase());
        ///
        /// assert_eq!(&*lazy, "HELLO, WORLD!");
        /// # }
        /// ```
        pub const fn new(init: F) -> Lazy<T, F> {
            Lazy { cell: OnceCell::new(), init: Cell::new(Some(init)) }
        }
    }

    impl<T, F: FnOnce() -> T> Lazy<T, F> {
        /// Forces the evaluation of this lazy value and returns a reference to
        /// the result.
        ///
        /// This is equivalent to the `Deref` impl, but is explicit.
        ///
        /// # Example
        /// ```
        /// use once_cell::unsync::Lazy;
        ///
        /// let lazy = Lazy::new(|| 92);
        ///
        /// assert_eq!(Lazy::force(&lazy), &92);
        /// assert_eq!(&*lazy, &92);
        /// ```
        pub fn force(this: &Lazy<T, F>) -> &T {
            this.cell.get_or_init(|| match this.init.take() {
                Some(f) => f(),
                None => panic!("Lazy instance has previously been poisoned"),
            })
        }
    }

    impl<T, F: FnOnce() -> T> Deref for Lazy<T, F> {
        type Target = T;
        fn deref(&self) -> &T {
            Lazy::force(self)
        }
    }

    impl<T, F: FnOnce() -> T> DerefMut for Lazy<T, F> {
        fn deref_mut(&mut self) -> &mut T {
            Lazy::force(self);
            self.cell.get_mut().unwrap_or_else(|| unreachable!())
        }
    }

    impl<T: Default> Default for Lazy<T> {
        /// Creates a new lazy value using `Default` as the initializing function.
        fn default() -> Lazy<T> {
            Lazy::new(T::default)
        }
    }
}

#[cfg(feature = "std")]
pub mod sync {
    use std::{
        cell::Cell,
        fmt, mem,
        ops::{Deref, DerefMut},
        panic::RefUnwindSafe,
    };

    use crate::imp::OnceCell as Imp;

    /// A thread-safe cell which can be written to only once.
    ///
    /// `OnceCell` provides `&` references to the contents without RAII guards.
    ///
    /// Reading a non-`None` value out of `OnceCell` establishes a
    /// happens-before relationship with a corresponding write. For example, if
    /// thread A initializes the cell with `get_or_init(f)`, and thread B
    /// subsequently reads the result of this call, B also observes all the side
    /// effects of `f`.
    ///
    /// # Example
    /// ```
    /// use once_cell::sync::OnceCell;
    ///
    /// static CELL: OnceCell<String> = OnceCell::new();
    /// assert!(CELL.get().is_none());
    ///
    /// std::thread::spawn(|| {
    ///     let value: &String = CELL.get_or_init(|| {
    ///         "Hello, World!".to_string()
    ///     });
    ///     assert_eq!(value, "Hello, World!");
    /// }).join().unwrap();
    ///
    /// let value: Option<&String> = CELL.get();
    /// assert!(value.is_some());
    /// assert_eq!(value.unwrap().as_str(), "Hello, World!");
    /// ```
    pub struct OnceCell<T>(Imp<T>);

    impl<T> Default for OnceCell<T> {
        fn default() -> OnceCell<T> {
            OnceCell::new()
        }
    }

    impl<T: fmt::Debug> fmt::Debug for OnceCell<T> {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            match self.get() {
                Some(v) => f.debug_tuple("OnceCell").field(v).finish(),
                None => f.write_str("OnceCell(Uninit)"),
            }
        }
    }

    impl<T: Clone> Clone for OnceCell<T> {
        fn clone(&self) -> OnceCell<T> {
            let res = OnceCell::new();
            if let Some(value) = self.get() {
                match res.set(value.clone()) {
                    Ok(()) => (),
                    Err(_) => unreachable!(),
                }
            }
            res
        }
    }

    impl<T> From<T> for OnceCell<T> {
        fn from(value: T) -> Self {
            let cell = Self::new();
            cell.get_or_init(|| value);
            cell
        }
    }

    impl<T: PartialEq> PartialEq for OnceCell<T> {
        fn eq(&self, other: &OnceCell<T>) -> bool {
            self.get() == other.get()
        }
    }

    impl<T: Eq> Eq for OnceCell<T> {}

    impl<T> OnceCell<T> {
        /// Creates a new empty cell.
        pub const fn new() -> OnceCell<T> {
            OnceCell(Imp::new())
        }

        /// Gets the reference to the underlying value.
        ///
        /// Returns `None` if the cell is empty, or being initialized. This
        /// method never blocks.
        pub fn get(&self) -> Option<&T> {
            if self.0.is_initialized() {
                // Safe b/c value is initialized.
                Some(unsafe { self.get_unchecked() })
            } else {
                None
            }
        }

        /// Gets the mutable reference to the underlying value.
        ///
        /// Returns `None` if the cell is empty.
        pub fn get_mut(&mut self) -> Option<&mut T> {
            self.0.get_mut()
        }

        /// Get the reference to the underlying value, without checking if the
        /// cell is initialized.
        ///
        /// # Safety
        ///
        /// Caller must ensure that the cell is in initialized state, and that
        /// the contents are acquired by (synchronized to) this thread.
        pub unsafe fn get_unchecked(&self) -> &T {
            self.0.get_unchecked()
        }

        /// Sets the contents of this cell to `value`.
        ///
        /// Returns `Ok(())` if the cell was empty and `Err(value)` if it was
        /// full.
        ///
        /// # Example
        ///
        /// ```
        /// use once_cell::sync::OnceCell;
        ///
        /// static CELL: OnceCell<i32> = OnceCell::new();
        ///
        /// fn main() {
        ///     assert!(CELL.get().is_none());
        ///
        ///     std::thread::spawn(|| {
        ///         assert_eq!(CELL.set(92), Ok(()));
        ///     }).join().unwrap();
        ///
        ///     assert_eq!(CELL.set(62), Err(62));
        ///     assert_eq!(CELL.get(), Some(&92));
        /// }
        /// ```
        pub fn set(&self, value: T) -> Result<(), T> {
            let mut value = Some(value);
            self.get_or_init(|| value.take().unwrap());
            match value {
                None => Ok(()),
                Some(value) => Err(value),
            }
        }

        /// Gets the contents of the cell, initializing it with `f` if the cell
        /// was empty.
        ///
        /// Many threads may call `get_or_init` concurrently with different
        /// initializing functions, but it is guaranteed that only one function
        /// will be executed.
        ///
        /// # Panics
        ///
        /// If `f` panics, the panic is propagated to the caller, and the cell
        /// remains uninitialized.
        ///
        /// It is an error to reentrantly initialize the cell from `f`. The
        /// exact outcome is unspecified. Current implementation deadlocks, but
        /// this may be changed to a panic in the future.
        ///
        /// # Example
        /// ```
        /// use once_cell::sync::OnceCell;
        ///
        /// let cell = OnceCell::new();
        /// let value = cell.get_or_init(|| 92);
        /// assert_eq!(value, &92);
        /// let value = cell.get_or_init(|| unreachable!());
        /// assert_eq!(value, &92);
        /// ```
        pub fn get_or_init<F>(&self, f: F) -> &T
        where
            F: FnOnce() -> T,
        {
            enum Void {}
            match self.get_or_try_init(|| Ok::<T, Void>(f())) {
                Ok(val) => val,
                Err(void) => match void {},
            }
        }

        /// Gets the contents of the cell, initializing it with `f` if
        /// the cell was empty. If the cell was empty and `f` failed, an
        /// error is returned.
        ///
        /// # Panics
        ///
        /// If `f` panics, the panic is propagated to the caller, and
        /// the cell remains uninitialized.
        ///
        /// It is an error to reentrantly initialize the cell from `f`.
        /// The exact outcome is unspecified. Current implementation
        /// deadlocks, but this may be changed to a panic in the future.
        ///
        /// # Example
        /// ```
        /// use once_cell::sync::OnceCell;
        ///
        /// let cell = OnceCell::new();
        /// assert_eq!(cell.get_or_try_init(|| Err(())), Err(()));
        /// assert!(cell.get().is_none());
        /// let value = cell.get_or_try_init(|| -> Result<i32, ()> {
        ///     Ok(92)
        /// });
        /// assert_eq!(value, Ok(&92));
        /// assert_eq!(cell.get(), Some(&92))
        /// ```
        pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E>
        where
            F: FnOnce() -> Result<T, E>,
        {
            // Fast path check
            if let Some(value) = self.get() {
                return Ok(value);
            }
            self.0.initialize(f)?;

            // Safe b/c value is initialized.
            debug_assert!(self.0.is_initialized());
            Ok(unsafe { self.get_unchecked() })
        }

        /// Takes the value out of this `OnceCell`, moving it back to an uninitialized state.
        ///
        /// Has no effect and returns `None` if the `OnceCell` hasn't been initialized.
        ///
        /// # Examples
        ///
        /// ```
        /// use once_cell::sync::OnceCell;
        ///
        /// let mut cell: OnceCell<String> = OnceCell::new();
        /// assert_eq!(cell.take(), None);
        ///
        /// let mut cell = OnceCell::new();
        /// cell.set("hello".to_string()).unwrap();
        /// assert_eq!(cell.take(), Some("hello".to_string()));
        /// assert_eq!(cell.get(), None);
        /// ```
        pub fn take(&mut self) -> Option<T> {
            mem::replace(self, Self::default()).into_inner()
        }

        /// Consumes the `OnceCell`, returning the wrapped value. Returns
        /// `None` if the cell was empty.
        ///
        /// # Examples
        ///
        /// ```
        /// use once_cell::sync::OnceCell;
        ///
        /// let cell: OnceCell<String> = OnceCell::new();
        /// assert_eq!(cell.into_inner(), None);
        ///
        /// let cell = OnceCell::new();
        /// cell.set("hello".to_string()).unwrap();
        /// assert_eq!(cell.into_inner(), Some("hello".to_string()));
        /// ```
        pub fn into_inner(self) -> Option<T> {
            self.0.into_inner()
        }
    }

    /// A value which is initialized on the first access.
    ///
    /// This type is thread-safe and can be used in statics.
    ///
    /// # Example
    ///
    /// ```
    /// use std::collections::HashMap;
    ///
    /// use once_cell::sync::Lazy;
    ///
    /// static HASHMAP: Lazy<HashMap<i32, String>> = Lazy::new(|| {
    ///     println!("initializing");
    ///     let mut m = HashMap::new();
    ///     m.insert(13, "Spica".to_string());
    ///     m.insert(74, "Hoyten".to_string());
    ///     m
    /// });
    ///
    /// fn main() {
    ///     println!("ready");
    ///     std::thread::spawn(|| {
    ///         println!("{:?}", HASHMAP.get(&13));
    ///     }).join().unwrap();
    ///     println!("{:?}", HASHMAP.get(&74));
    ///
    ///     // Prints:
    ///     //   ready
    ///     //   initializing
    ///     //   Some("Spica")
    ///     //   Some("Hoyten")
    /// }
    /// ```
    pub struct Lazy<T, F = fn() -> T> {
        cell: OnceCell<T>,
        init: Cell<Option<F>>,
    }

    impl<T: fmt::Debug, F> fmt::Debug for Lazy<T, F> {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            f.debug_struct("Lazy").field("cell", &self.cell).field("init", &"..").finish()
        }
    }

    // We never create a `&F` from a `&Lazy<T, F>` so it is fine
    // to not impl `Sync` for `F`
    // we do create a `&mut Option<F>` in `force`, but this is
    // properly synchronized, so it only happens once
    // so it also does not contribute to this impl.
    unsafe impl<T, F: Send> Sync for Lazy<T, F> where OnceCell<T>: Sync {}
    // auto-derived `Send` impl is OK.

    #[cfg(feature = "std")]
    impl<T, F: RefUnwindSafe> RefUnwindSafe for Lazy<T, F> where OnceCell<T>: RefUnwindSafe {}

    impl<T, F> Lazy<T, F> {
        /// Creates a new lazy value with the given initializing
        /// function.
        pub const fn new(f: F) -> Lazy<T, F> {
            Lazy { cell: OnceCell::new(), init: Cell::new(Some(f)) }
        }
    }

    impl<T, F: FnOnce() -> T> Lazy<T, F> {
        /// Forces the evaluation of this lazy value and
        /// returns a reference to the result. This is equivalent
        /// to the `Deref` impl, but is explicit.
        ///
        /// # Example
        /// ```
        /// use once_cell::sync::Lazy;
        ///
        /// let lazy = Lazy::new(|| 92);
        ///
        /// assert_eq!(Lazy::force(&lazy), &92);
        /// assert_eq!(&*lazy, &92);
        /// ```
        pub fn force(this: &Lazy<T, F>) -> &T {
            this.cell.get_or_init(|| match this.init.take() {
                Some(f) => f(),
                None => panic!("Lazy instance has previously been poisoned"),
            })
        }
    }

    impl<T, F: FnOnce() -> T> Deref for Lazy<T, F> {
        type Target = T;
        fn deref(&self) -> &T {
            Lazy::force(self)
        }
    }

    impl<T, F: FnOnce() -> T> DerefMut for Lazy<T, F> {
        fn deref_mut(&mut self) -> &mut T {
            Lazy::force(self);
            self.cell.get_mut().unwrap_or_else(|| unreachable!())
        }
    }

    impl<T: Default> Default for Lazy<T> {
        /// Creates a new lazy value using `Default` as the initializing function.
        fn default() -> Lazy<T> {
            Lazy::new(T::default)
        }
    }

    /// ```compile_fail
    /// struct S(*mut ());
    /// unsafe impl Sync for S {}
    ///
    /// fn share<T: Sync>(_: &T) {}
    /// share(&once_cell::sync::OnceCell::<S>::new());
    /// ```
    ///
    /// ```compile_fail
    /// struct S(*mut ());
    /// unsafe impl Sync for S {}
    ///
    /// fn share<T: Sync>(_: &T) {}
    /// share(&once_cell::sync::Lazy::<S>::new(|| unimplemented!()));
    /// ```
    fn _dummy() {}
}