1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
/*
NeuQuant Neural-Net Quantization Algorithm by Anthony Dekker, 1994.
See "Kohonen neural networks for optimal colour quantization"
in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
for a discussion of the algorithm.
See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML

Incorporated bugfixes and alpha channel handling from pngnq
http://pngnq.sourceforge.net

Copyright (c) 2014 The Piston Developers

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
 
NeuQuant Neural-Net Quantization Algorithm
------------------------------------------

Copyright (c) 1994 Anthony Dekker

NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
See "Kohonen neural networks for optimal colour quantization"
in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
for a discussion of the algorithm.
See also  http://members.ozemail.com.au/~dekker/NEUQUANT.HTML

Any party obtaining a copy of these files from the author, directly or
indirectly, is granted, free of charge, a full and unrestricted irrevocable,
world-wide, paid up, royalty-free, nonexclusive right and license to deal
in this software and documentation files (the "Software"), including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons who receive
copies from any such party to do so, with the only requirement being
that this copyright notice remain intact.

*/
//! # Color quantization library
//! This library provides a color quantizer based on the [NEUQUANT](http://members.ozemail.com.au/~dekker/NEUQUANT.HTML)
//! quantization algorithm by Anthony Dekker.
//! ### Usage
//! ```
//! let data = vec![0; 40];
//! let nq = color_quant::NeuQuant::new(10, 256, &data);
//! let indixes: Vec<u8> = data.chunks(4).map(|pix| nq.index_of(pix) as u8).collect();
//! let color_map = nq.color_map_rgba();
//! ```
//! 

#![cfg_attr(all(feature = "mesalock_sgx",
                not(target_env = "sgx")), no_std)]
#![cfg_attr(all(target_env = "sgx", target_vendor = "mesalock"), feature(rustc_private))]

#[cfg(all(feature = "mesalock_sgx", not(target_env = "sgx")))]
#[macro_use]
extern crate sgx_tstd as std;

use std::prelude::v1::*;

use std::cmp::{
    max,
    min
};

macro_rules! clamp(		
    ($x:expr) => (match $x {		
        x if x < 0 => 0,		
        x if x > 255 => 255,		
        x => x		
    })		
);

const CHANNELS: usize = 4;

const RADIUS_DEC: i32 = 30; // factor of 1/30 each cycle

const ALPHA_BIASSHIFT: i32 = 10;            // alpha starts at 1
const INIT_ALPHA: i32 = 1 << ALPHA_BIASSHIFT; // biased by 10 bits

const GAMMA: f64 = 1024.0;
const BETA: f64 = 1.0 / GAMMA;
const BETAGAMMA: f64 = BETA * GAMMA;

// four primes near 500 - assume no image has a length so large
// that it is divisible by all four primes
const PRIMES: [usize; 4] = [499, 491, 478, 503];

#[derive(Clone, Copy)]
struct Quad<T> {
    r: T,
    g: T,
    b: T,
    a: T,
}

type Neuron = Quad<f64>;
type Color = Quad<i32>;

/// Neural network based color quantizer.
pub struct NeuQuant {
    network: Vec<Neuron>,
    colormap: Vec<Color>,
    netindex: Vec<usize>,
    bias: Vec<f64>, // bias and freq arrays for learning
    freq: Vec<f64>,
    samplefac: i32,
    netsize: usize,
}

impl NeuQuant {
    /// Creates a new neuronal network and trains it with the supplied data.
    ///
    /// Pixels are assumed to be in RGBA format. 
    /// `colors` should be $>=64$. `samplefac` determines the faction of
    /// the sample that will be used to train the network. Its value must be in the 
    /// range $[1, 30]$. A value of $1$ thus produces the best result but is also
    /// slowest. $10$ is a good compromise between speed and quality.
    pub fn new(samplefac: i32, colors: usize, pixels: &[u8]) -> Self {
        let netsize = colors;
        let mut this = NeuQuant {
            network: Vec::with_capacity(netsize),
            colormap: Vec::with_capacity(netsize),
            netindex: vec![0; 256],
            bias: Vec::with_capacity(netsize),
            freq: Vec::with_capacity(netsize),
            samplefac: samplefac,
            netsize: colors
        };
        this.init(pixels);
        this
    }

    /// Initializes the neuronal network and trains it with the supplied data.
    ///
    /// This method gets called by `Self::new`.
    pub fn init(&mut self, pixels: &[u8]) {
        self.network.clear();
        self.colormap.clear();
        self.bias.clear();
        self.freq.clear();
        let freq = (self.netsize as f64).recip();
        for i in 0..self.netsize {
            let tmp = (i as f64) * 256.0 / (self.netsize as f64);
            // Sets alpha values at 0 for dark pixels.
            let a = if i < 16 { i as f64 * 16.0 } else { 255.0 };
            self.network.push(Neuron { r: tmp, g: tmp, b: tmp, a: a});
            self.colormap.push(Color { r: 0, g: 0, b: 0, a: 255 });
            self.freq.push(freq);
            self.bias.push(0.0);
        }
        self.learn(pixels);
        self.build_colormap();
        self.inxbuild();
    }

    /// Maps the rgba-pixel in-place to the best-matching color in the color map.
    #[inline(always)]
    pub fn map_pixel(&self, pixel: &mut [u8]) {
        assert!(pixel.len() == 4);
        match (pixel[0], pixel[1], pixel[2], pixel[3]) {
            (r, g, b, a) => {
                let i = self.inxsearch(b, g, r, a);
                pixel[0] = self.colormap[i].r as u8;
                pixel[1] = self.colormap[i].g as u8;
                pixel[2] = self.colormap[i].b as u8;
                pixel[3] = self.colormap[i].a as u8;
            }
        }
    }

    /// Finds the best-matching index in the color map.
    ///
    /// `pixel` is assumed to be in RGBA format.
    #[inline(always)]
    pub fn index_of(&self, pixel: &[u8]) -> usize {
        assert!(pixel.len() == 4);
        match (pixel[0], pixel[1], pixel[2], pixel[3]) {
            (r, g, b, a) => {
                self.inxsearch(b, g, r, a)
            }
        }
    }
    
    /// Returns the RGBA color map calculated from the sample. 
    pub fn color_map_rgba(&self) -> Vec<u8> {
        let mut map = Vec::with_capacity(self.netsize * 4);
        for entry in &self.colormap {
            map.push(entry.r as u8);
            map.push(entry.g as u8);
            map.push(entry.b as u8);
            map.push(entry.a as u8);
        }
        map
    }
    
    /// Returns the RGBA color map calculated from the sample. 
    pub fn color_map_rgb(&self) -> Vec<u8> {
        let mut map = Vec::with_capacity(self.netsize * 3);
        for entry in &self.colormap {
            map.push(entry.r as u8);
            map.push(entry.g as u8);
            map.push(entry.b as u8);
        }
        map
    }

    /// Move neuron i towards biased (a,b,g,r) by factor alpha
    fn altersingle(&mut self, alpha: f64, i: i32, quad: Quad<f64>) {
        let n = &mut self.network[i as usize];
        n.b -= alpha * (n.b - quad.b);
        n.g -= alpha * (n.g - quad.g);
        n.r -= alpha * (n.r - quad.r);
        n.a -= alpha * (n.a - quad.a);
    }

    /// Move neuron adjacent neurons towards biased (a,b,g,r) by factor alpha
    fn alterneigh(&mut self, alpha: f64, rad: i32, i: i32, quad: Quad<f64>) {
        let lo = max(i - rad, 0);
        let hi = min(i + rad, self.netsize as i32);
        let mut j = i + 1;
        let mut k = i - 1;
        let mut q = 0;

        while (j < hi) || (k > lo) {
            let rad_sq = rad as f64 * rad as f64;
            let alpha = (alpha * (rad_sq - q as f64 * q as f64)) / rad_sq;
            q += 1;
            if j < hi {
                let p = &mut self.network[j as usize];
                p.b -= alpha * (p.b - quad.b);
                p.g -= alpha * (p.g - quad.g);
                p.r -= alpha * (p.r - quad.r);
                p.a -= alpha * (p.a - quad.a);
                j += 1;
            }
            if k > lo {
                let p = &mut self.network[k as usize];
                p.b -= alpha * (p.b - quad.b);
                p.g -= alpha * (p.g - quad.g);
                p.r -= alpha * (p.r - quad.r);
                p.a -= alpha * (p.a - quad.a);
                k -= 1;
            }
        }
    }

    /// Search for biased BGR values
    /// finds closest neuron (min dist) and updates freq
    /// finds best neuron (min dist-bias) and returns position
    /// for frequently chosen neurons, freq[i] is high and bias[i] is negative
    /// bias[i] = gamma*((1/self.netsize)-freq[i])
    fn contest (&mut self, b: f64, g: f64, r: f64, a: f64) -> i32 {
        use std::f64;

        let mut bestd = f64::MAX;
        let mut bestbiasd: f64 = bestd;
        let mut bestpos = -1;
        let mut bestbiaspos: i32 = bestpos;

        for i in 0..self.netsize {
            let bestbiasd_biased = bestbiasd + self.bias[i];
            let mut dist;
            let n = &self.network[i];
            dist  = (n.b - b).abs();
            dist += (n.r - r).abs();
            if dist < bestd || dist < bestbiasd_biased {
                dist += (n.g - g).abs();
                dist += (n.a - a).abs();
                if dist < bestd {bestd=dist; bestpos=i as i32;}
                let biasdist = dist - self.bias [i];
                if biasdist < bestbiasd {bestbiasd=biasdist; bestbiaspos=i as i32;}
            }
            self.freq[i] -= BETA * self.freq[i];
            self.bias[i] += BETAGAMMA * self.freq[i];
        }
        self.freq[bestpos as usize] += BETA;
        self.bias[bestpos as usize] -= BETAGAMMA;
        return bestbiaspos;
    }

    /// Main learning loop
    /// Note: the number of learning cycles is crucial and the parameters are not
    /// optimized for net sizes < 26 or > 256. 1064 colors seems to work fine
    fn learn(&mut self, pixels: &[u8]) {
        let initrad: i32 = self.netsize as i32/8;   // for 256 cols, radius starts at 32
        let radiusbiasshift: i32 = 6;
        let radiusbias: i32 = 1 << radiusbiasshift;
        let init_bias_radius: i32 = initrad*radiusbias;
        let mut bias_radius = init_bias_radius;
        let alphadec = 30 + ((self.samplefac-1)/3);
        let lengthcount = pixels.len() / CHANNELS;
        let samplepixels = lengthcount / self.samplefac as usize;
        // learning cycles
        let n_cycles = match self.netsize >> 1 { n if n <= 100 => 100, n => n};
        let delta = match samplepixels / n_cycles { 0 => 1, n => n };
        let mut alpha = INIT_ALPHA;

        let mut rad = bias_radius >> radiusbiasshift;
        if rad <= 1 {rad = 0};

        let mut pos = 0;
        let step = *PRIMES.iter()
            .find(|&&prime| lengthcount % prime != 0)
            .unwrap_or(&PRIMES[3]);

        let mut i = 0;
        while i < samplepixels {
            let (r, g, b, a) = {
                let p = &pixels[CHANNELS * pos..][..CHANNELS];
                (p[0] as f64, p[1] as f64, p[2] as f64, p[3] as f64)
            };

            let j =  self.contest (b, g, r, a);

            let alpha_ = (1.0 * alpha as f64) / INIT_ALPHA as f64;
            self.altersingle(alpha_, j, Quad { b: b, g: g, r: r, a: a });
            if rad > 0 {
                self.alterneigh(alpha_, rad, j, Quad { b: b, g: g, r: r, a: a })
            };

            pos += step;
            while pos >= lengthcount { pos -= lengthcount };

            i += 1;
            if i%delta == 0 {
                alpha -= alpha / alphadec;
                bias_radius -= bias_radius / RADIUS_DEC;
                rad = bias_radius >> radiusbiasshift;
                if rad <= 1 {rad = 0};
            }
        }
    }

    /// initializes the color map
    fn build_colormap(&mut self) {
        for i in 0usize..self.netsize {
            self.colormap[i].b = clamp!(self.network[i].b.round() as i32);
            self.colormap[i].g = clamp!(self.network[i].g.round() as i32);
            self.colormap[i].r = clamp!(self.network[i].r.round() as i32);
            self.colormap[i].a = clamp!(self.network[i].a.round() as i32);
        }
    }

    /// Insertion sort of network and building of netindex[0..255]
    fn inxbuild(&mut self) {
        let mut previouscol = 0;
        let mut startpos = 0;

        for i in 0..self.netsize {
            let mut p = self.colormap[i];
            let mut q;
            let mut smallpos = i;
            let mut smallval = p.g as usize;            // index on g
            // find smallest in i..netsize-1
            for j in (i + 1)..self.netsize {
                q = self.colormap[j];
                if (q.g as usize) < smallval {      // index on g
                    smallpos = j;
                    smallval = q.g as usize;    // index on g
                }
            }
            q = self.colormap[smallpos];
            // swap p (i) and q (smallpos) entries
            if i != smallpos {
                let j;
                j = q;   q = p;   p = j;
                self.colormap[i] = p;
                self.colormap[smallpos] = q;
            }
            // smallval entry is now in position i
            if smallval != previouscol {
                self.netindex[previouscol] = (startpos + i)>>1;
                for j in (previouscol + 1)..smallval {
                    self.netindex[j] = i
                }
                previouscol = smallval;
                startpos = i;
            }
        }
        let max_netpos = self.netsize - 1;
        self.netindex[previouscol] = (startpos + max_netpos)>>1;
        for j in (previouscol + 1)..256 { self.netindex[j] = max_netpos }; // really 256
    }

    /// Search for best matching color
    fn inxsearch(&self, b: u8, g: u8, r: u8, a: u8) -> usize {
        let mut bestd = 1 << 30; // ~ 1_000_000
        let mut best = 0;
        // start at netindex[g] and work outwards
        let mut i = self.netindex[g as usize];
        let mut j = if i > 0 { i - 1 } else { 0 };

        while (i < self.netsize) || (j >  0) {
            if i < self.netsize {
                let p = self.colormap[i];
                let mut e = p.g - g as i32;
                let mut dist = e*e; // inx key
                if dist >= bestd { break }
                else {
                    e = p.b - b as i32;
                    dist += e*e;
                    if dist < bestd {
                        e = p.r - r as i32;
                        dist += e*e;
                        if dist < bestd {
                            e = p.a - a as i32;
                            dist += e*e;
                            if dist < bestd { bestd = dist; best = i;}
                        }
                    }
                    i += 1;
                }
            }
            if j > 0 {
                let p = self.colormap[j];
                let mut e = p.g - g as i32;
                let mut dist = e*e; // inx key
                if dist >= bestd { break }
                else {
                    e = p.b - b as i32;
                    dist += e*e;
                    if dist < bestd {
                        e = p.r - r as i32;
                        dist += e*e;
                        if dist < bestd {
                            e = p.a - a as i32;
                            dist += e*e;
                            if dist < bestd { bestd = dist; best = j; }
                        }
                    }
                    j -= 1;
                }
            }
        }
        best
    }
}