1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
use core::{
    cmp,
    fmt::Debug,
    panic::{RefUnwindSafe, UnwindSafe},
    u8,
};

use alloc::{sync::Arc, vec, vec::Vec};

use crate::{
    packed,
    util::{
        alphabet::ByteSet,
        search::{Match, MatchKind, Span},
    },
};

/// A prefilter for accelerating a search.
///
/// This crate uses prefilters in the core search implementations to accelerate
/// common cases. They typically only apply to cases where there are a small
/// number of patterns (less than 100 or so), but when they do, thoughput can
/// be boosted considerably, perhaps by an order of magnitude. When a prefilter
/// is active, it is used whenever a search enters an automaton's start state.
///
/// Currently, prefilters cannot be constructed by
/// callers. A `Prefilter` can only be accessed via the
/// [`Automaton::prefilter`](crate::automaton::Automaton::prefilter)
/// method and used to execute a search. In other words, a prefilter can be
/// used to optimize your own search implementation if necessary, but cannot do
/// much else. If you have a use case for more APIs, please submit an issue.
#[derive(Clone, Debug)]
pub struct Prefilter {
    finder: Arc<dyn PrefilterI>,
    memory_usage: usize,
}

impl Prefilter {
    /// Execute a search in the haystack within the span given. If a match or
    /// a possible match is returned, then it is guaranteed to occur within
    /// the bounds of the span.
    ///
    /// If the span provided is invalid for the given haystack, then behavior
    /// is unspecified.
    #[inline]
    pub fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
        self.finder.find_in(haystack, span)
    }

    #[inline]
    pub(crate) fn memory_usage(&self) -> usize {
        self.memory_usage
    }
}

/// A candidate is the result of running a prefilter on a haystack at a
/// particular position.
///
/// The result is either no match, a confirmed match or a possible match.
///
/// When no match is returned, the prefilter is guaranteeing that no possible
/// match can be found in the haystack, and the caller may trust this. That is,
/// all correct prefilters must never report false negatives.
///
/// In some cases, a prefilter can confirm a match very quickly, in which case,
/// the caller may use this to stop what it's doing and report the match. In
/// this case, prefilter implementations must never report a false positive.
/// In other cases, the prefilter can only report a potential match, in which
/// case the callers must attempt to confirm the match. In this case, prefilter
/// implementations are permitted to return false positives.
#[derive(Clone, Debug)]
pub enum Candidate {
    /// No match was found. Since false negatives are not possible, this means
    /// the search can quit as it is guaranteed not to find another match.
    None,
    /// A confirmed match was found. Callers do not need to confirm it.
    Match(Match),
    /// The start of a possible match was found. Callers must confirm it before
    /// reporting it as a match.
    PossibleStartOfMatch(usize),
}

impl Candidate {
    /// Convert this candidate into an option. This is useful when callers
    /// do not distinguish between true positives and false positives (i.e.,
    /// the caller must always confirm the match).
    pub fn into_option(self) -> Option<usize> {
        match self {
            Candidate::None => None,
            Candidate::Match(ref m) => Some(m.start()),
            Candidate::PossibleStartOfMatch(start) => Some(start),
        }
    }
}

/// A prefilter describes the behavior of fast literal scanners for quickly
/// skipping past bytes in the haystack that we know cannot possibly
/// participate in a match.
trait PrefilterI:
    Send + Sync + RefUnwindSafe + UnwindSafe + Debug + 'static
{
    /// Returns the next possible match candidate. This may yield false
    /// positives, so callers must confirm a match starting at the position
    /// returned. This, however, must never produce false negatives. That is,
    /// this must, at minimum, return the starting position of the next match
    /// in the given haystack after or at the given position.
    fn find_in(&self, haystack: &[u8], span: Span) -> Candidate;
}

impl<P: PrefilterI + ?Sized> PrefilterI for Arc<P> {
    #[inline(always)]
    fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
        (**self).find_in(haystack, span)
    }
}

/// A builder for constructing the best possible prefilter. When constructed,
/// this builder will heuristically select the best prefilter it can build,
/// if any, and discard the rest.
#[derive(Debug)]
pub(crate) struct Builder {
    count: usize,
    ascii_case_insensitive: bool,
    start_bytes: StartBytesBuilder,
    rare_bytes: RareBytesBuilder,
    memmem: MemmemBuilder,
    packed: Option<packed::Builder>,
    // If we run across a condition that suggests we shouldn't use a prefilter
    // at all (like an empty pattern), then disable prefilters entirely.
    enabled: bool,
}

impl Builder {
    /// Create a new builder for constructing the best possible prefilter.
    pub(crate) fn new(kind: MatchKind) -> Builder {
        let pbuilder = kind
            .as_packed()
            .map(|kind| packed::Config::new().match_kind(kind).builder());
        Builder {
            count: 0,
            ascii_case_insensitive: false,
            start_bytes: StartBytesBuilder::new(),
            rare_bytes: RareBytesBuilder::new(),
            memmem: MemmemBuilder::default(),
            packed: pbuilder,
            enabled: true,
        }
    }

    /// Enable ASCII case insensitivity. When set, byte strings added to this
    /// builder will be interpreted without respect to ASCII case.
    pub(crate) fn ascii_case_insensitive(mut self, yes: bool) -> Builder {
        self.ascii_case_insensitive = yes;
        self.start_bytes = self.start_bytes.ascii_case_insensitive(yes);
        self.rare_bytes = self.rare_bytes.ascii_case_insensitive(yes);
        self
    }

    /// Return a prefilter suitable for quickly finding potential matches.
    ///
    /// All patterns added to an Aho-Corasick automaton should be added to this
    /// builder before attempting to construct the prefilter.
    pub(crate) fn build(&self) -> Option<Prefilter> {
        if !self.enabled {
            return None;
        }
        // If we only have one pattern, then deferring to memmem is always
        // the best choice. This is kind of a weird case, because, well, why
        // use Aho-Corasick if you only have one pattern? But maybe you don't
        // know exactly how many patterns you'll get up front, and you need to
        // support the option of multiple patterns. So instead of relying on
        // the caller to branch and use memmem explicitly, we just do it for
        // them.
        if !self.ascii_case_insensitive {
            if let Some(pre) = self.memmem.build() {
                return Some(pre);
            }
        }
        match (self.start_bytes.build(), self.rare_bytes.build()) {
            // If we could build both start and rare prefilters, then there are
            // a few cases in which we'd want to use the start-byte prefilter
            // over the rare-byte prefilter, since the former has lower
            // overhead.
            (prestart @ Some(_), prerare @ Some(_)) => {
                // If the start-byte prefilter can scan for a smaller number
                // of bytes than the rare-byte prefilter, then it's probably
                // faster.
                let has_fewer_bytes =
                    self.start_bytes.count < self.rare_bytes.count;
                // Otherwise, if the combined frequency rank of the detected
                // bytes in the start-byte prefilter is "close" to the combined
                // frequency rank of the rare-byte prefilter, then we pick
                // the start-byte prefilter even if the rare-byte prefilter
                // heuristically searches for rare bytes. This is because the
                // rare-byte prefilter has higher constant costs, so we tend to
                // prefer the start-byte prefilter when we can.
                let has_rarer_bytes =
                    self.start_bytes.rank_sum <= self.rare_bytes.rank_sum + 50;
                if has_fewer_bytes || has_rarer_bytes {
                    prestart
                } else {
                    prerare
                }
            }
            (prestart @ Some(_), None) => prestart,
            (None, prerare @ Some(_)) => prerare,
            (None, None) if self.ascii_case_insensitive => None,
            (None, None) => {
                self.packed.as_ref().and_then(|b| b.build()).map(|s| {
                    let memory_usage = s.memory_usage();
                    Prefilter { finder: Arc::new(Packed(s)), memory_usage }
                })
            }
        }
    }

    /// Add a literal string to this prefilter builder.
    pub(crate) fn add(&mut self, bytes: &[u8]) {
        if bytes.is_empty() {
            self.enabled = false;
        }
        if !self.enabled {
            return;
        }
        self.count += 1;
        self.start_bytes.add(bytes);
        self.rare_bytes.add(bytes);
        self.memmem.add(bytes);
        if let Some(ref mut pbuilder) = self.packed {
            pbuilder.add(bytes);
        }
    }
}

/// A type that wraps a packed searcher and implements the `Prefilter`
/// interface.
#[derive(Clone, Debug)]
struct Packed(packed::Searcher);

impl PrefilterI for Packed {
    fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
        self.0
            .find_in(&haystack, span)
            .map_or(Candidate::None, Candidate::Match)
    }
}

/// A builder for constructing a prefilter that uses memmem.
#[derive(Debug, Default)]
struct MemmemBuilder {
    /// The number of patterns that have been added.
    count: usize,
    /// The singular pattern to search for. This is only set when count==1.
    one: Option<Vec<u8>>,
}

impl MemmemBuilder {
    fn build(&self) -> Option<Prefilter> {
        #[cfg(all(feature = "std", feature = "perf-literal"))]
        fn imp(builder: &MemmemBuilder) -> Option<Prefilter> {
            let pattern = builder.one.as_ref()?;
            assert_eq!(1, builder.count);
            let finder = Arc::new(Memmem(
                memchr::memmem::Finder::new(pattern).into_owned(),
            ));
            let memory_usage = pattern.len();
            Some(Prefilter { finder, memory_usage })
        }

        #[cfg(not(all(feature = "std", feature = "perf-literal")))]
        fn imp(_: &MemmemBuilder) -> Option<Prefilter> {
            None
        }

        imp(self)
    }

    fn add(&mut self, bytes: &[u8]) {
        self.count += 1;
        if self.count == 1 {
            self.one = Some(bytes.to_vec());
        } else {
            self.one = None;
        }
    }
}

/// A type that wraps a SIMD accelerated single substring search from the
/// `memchr` crate for use as a prefilter.
///
/// Currently, this prefilter is only active for Aho-Corasick searchers with
/// a single pattern. In theory, this could be extended to support searchers
/// that have a common prefix of more than one byte (for one byte, we would use
/// memchr), but it's not clear if it's worth it or not.
///
/// Also, unfortunately, this currently also requires the 'std' feature to
/// be enabled. That's because memchr doesn't have a no-std-but-with-alloc
/// mode, and so APIs like Finder::into_owned aren't available when 'std' is
/// disabled. But there should be an 'alloc' feature that brings in APIs like
/// Finder::into_owned but doesn't use std-only features like runtime CPU
/// feature detection.
#[cfg(all(feature = "std", feature = "perf-literal"))]
#[derive(Clone, Debug)]
struct Memmem(memchr::memmem::Finder<'static>);

#[cfg(all(feature = "std", feature = "perf-literal"))]
impl PrefilterI for Memmem {
    fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
        use crate::util::primitives::PatternID;

        self.0.find(&haystack[span]).map_or(Candidate::None, |i| {
            let start = span.start + i;
            let end = start + self.0.needle().len();
            // N.B. We can declare a match and use a fixed pattern ID here
            // because a Memmem prefilter is only ever created for searchers
            // with exactly one pattern. Thus, every match is always a match
            // and it is always for the first and only pattern.
            Candidate::Match(Match::new(PatternID::ZERO, start..end))
        })
    }
}

/// A builder for constructing a rare byte prefilter.
///
/// A rare byte prefilter attempts to pick out a small set of rare bytes that
/// occurr in the patterns, and then quickly scan to matches of those rare
/// bytes.
#[derive(Clone, Debug)]
struct RareBytesBuilder {
    /// Whether this prefilter should account for ASCII case insensitivity or
    /// not.
    ascii_case_insensitive: bool,
    /// A set of rare bytes, indexed by byte value.
    rare_set: ByteSet,
    /// A set of byte offsets associated with bytes in a pattern. An entry
    /// corresponds to a particular bytes (its index) and is only non-zero if
    /// the byte occurred at an offset greater than 0 in at least one pattern.
    ///
    /// If a byte's offset is not representable in 8 bits, then the rare bytes
    /// prefilter becomes inert.
    byte_offsets: RareByteOffsets,
    /// Whether this is available as a prefilter or not. This can be set to
    /// false during construction if a condition is seen that invalidates the
    /// use of the rare-byte prefilter.
    available: bool,
    /// The number of bytes set to an active value in `byte_offsets`.
    count: usize,
    /// The sum of frequency ranks for the rare bytes detected. This is
    /// intended to give a heuristic notion of how rare the bytes are.
    rank_sum: u16,
}

/// A set of byte offsets, keyed by byte.
#[derive(Clone, Copy)]
struct RareByteOffsets {
    /// Each entry corresponds to the maximum offset of the corresponding
    /// byte across all patterns seen.
    set: [RareByteOffset; 256],
}

impl RareByteOffsets {
    /// Create a new empty set of rare byte offsets.
    pub(crate) fn empty() -> RareByteOffsets {
        RareByteOffsets { set: [RareByteOffset::default(); 256] }
    }

    /// Add the given offset for the given byte to this set. If the offset is
    /// greater than the existing offset, then it overwrites the previous
    /// value and returns false. If there is no previous value set, then this
    /// sets it and returns true.
    pub(crate) fn set(&mut self, byte: u8, off: RareByteOffset) {
        self.set[byte as usize].max =
            cmp::max(self.set[byte as usize].max, off.max);
    }
}

impl core::fmt::Debug for RareByteOffsets {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        let mut offsets = vec![];
        for off in self.set.iter() {
            if off.max > 0 {
                offsets.push(off);
            }
        }
        f.debug_struct("RareByteOffsets").field("set", &offsets).finish()
    }
}

/// Offsets associated with an occurrence of a "rare" byte in any of the
/// patterns used to construct a single Aho-Corasick automaton.
#[derive(Clone, Copy, Debug)]
struct RareByteOffset {
    /// The maximum offset at which a particular byte occurs from the start
    /// of any pattern. This is used as a shift amount. That is, when an
    /// occurrence of this byte is found, the candidate position reported by
    /// the prefilter is `position_of_byte - max`, such that the automaton
    /// will begin its search at a position that is guaranteed to observe a
    /// match.
    ///
    /// To avoid accidentally quadratic behavior, a prefilter is considered
    /// ineffective when it is asked to start scanning from a position that it
    /// has already scanned past.
    ///
    /// Using a `u8` here means that if we ever see a pattern that's longer
    /// than 255 bytes, then the entire rare byte prefilter is disabled.
    max: u8,
}

impl Default for RareByteOffset {
    fn default() -> RareByteOffset {
        RareByteOffset { max: 0 }
    }
}

impl RareByteOffset {
    /// Create a new rare byte offset. If the given offset is too big, then
    /// None is returned. In that case, callers should render the rare bytes
    /// prefilter inert.
    fn new(max: usize) -> Option<RareByteOffset> {
        if max > u8::MAX as usize {
            None
        } else {
            Some(RareByteOffset { max: max as u8 })
        }
    }
}

impl RareBytesBuilder {
    /// Create a new builder for constructing a rare byte prefilter.
    fn new() -> RareBytesBuilder {
        RareBytesBuilder {
            ascii_case_insensitive: false,
            rare_set: ByteSet::empty(),
            byte_offsets: RareByteOffsets::empty(),
            available: true,
            count: 0,
            rank_sum: 0,
        }
    }

    /// Enable ASCII case insensitivity. When set, byte strings added to this
    /// builder will be interpreted without respect to ASCII case.
    fn ascii_case_insensitive(mut self, yes: bool) -> RareBytesBuilder {
        self.ascii_case_insensitive = yes;
        self
    }

    /// Build the rare bytes prefilter.
    ///
    /// If there are more than 3 distinct rare bytes found, or if heuristics
    /// otherwise determine that this prefilter should not be used, then `None`
    /// is returned.
    fn build(&self) -> Option<Prefilter> {
        #[cfg(feature = "perf-literal")]
        fn imp(builder: &RareBytesBuilder) -> Option<Prefilter> {
            if !builder.available || builder.count > 3 {
                return None;
            }
            let (mut bytes, mut len) = ([0; 3], 0);
            for b in 0..=255 {
                if builder.rare_set.contains(b) {
                    bytes[len] = b as u8;
                    len += 1;
                }
            }
            let finder: Arc<dyn PrefilterI> = match len {
                0 => return None,
                1 => Arc::new(RareBytesOne {
                    byte1: bytes[0],
                    offset: builder.byte_offsets.set[bytes[0] as usize],
                }),
                2 => Arc::new(RareBytesTwo {
                    offsets: builder.byte_offsets,
                    byte1: bytes[0],
                    byte2: bytes[1],
                }),
                3 => Arc::new(RareBytesThree {
                    offsets: builder.byte_offsets,
                    byte1: bytes[0],
                    byte2: bytes[1],
                    byte3: bytes[2],
                }),
                _ => unreachable!(),
            };
            Some(Prefilter { finder, memory_usage: 0 })
        }

        #[cfg(not(feature = "perf-literal"))]
        fn imp(_: &RareBytesBuilder) -> Option<Prefilter> {
            None
        }

        imp(self)
    }

    /// Add a byte string to this builder.
    ///
    /// All patterns added to an Aho-Corasick automaton should be added to this
    /// builder before attempting to construct the prefilter.
    fn add(&mut self, bytes: &[u8]) {
        // If we've already given up, then do nothing.
        if !self.available {
            return;
        }
        // If we've already blown our budget, then don't waste time looking
        // for more rare bytes.
        if self.count > 3 {
            self.available = false;
            return;
        }
        // If the pattern is too long, then our offset table is bunk, so
        // give up.
        if bytes.len() >= 256 {
            self.available = false;
            return;
        }
        let mut rarest = match bytes.get(0) {
            None => return,
            Some(&b) => (b, freq_rank(b)),
        };
        // The idea here is to look for the rarest byte in each pattern, and
        // add that to our set. As a special exception, if we see a byte that
        // we've already added, then we immediately stop and choose that byte,
        // even if there's another rare byte in the pattern. This helps us
        // apply the rare byte optimization in more cases by attempting to pick
        // bytes that are in common between patterns. So for example, if we
        // were searching for `Sherlock` and `lockjaw`, then this would pick
        // `k` for both patterns, resulting in the use of `memchr` instead of
        // `memchr2` for `k` and `j`.
        let mut found = false;
        for (pos, &b) in bytes.iter().enumerate() {
            self.set_offset(pos, b);
            if found {
                continue;
            }
            if self.rare_set.contains(b) {
                found = true;
                continue;
            }
            let rank = freq_rank(b);
            if rank < rarest.1 {
                rarest = (b, rank);
            }
        }
        if !found {
            self.add_rare_byte(rarest.0);
        }
    }

    fn set_offset(&mut self, pos: usize, byte: u8) {
        // This unwrap is OK because pos is never bigger than our max.
        let offset = RareByteOffset::new(pos).unwrap();
        self.byte_offsets.set(byte, offset);
        if self.ascii_case_insensitive {
            self.byte_offsets.set(opposite_ascii_case(byte), offset);
        }
    }

    fn add_rare_byte(&mut self, byte: u8) {
        self.add_one_rare_byte(byte);
        if self.ascii_case_insensitive {
            self.add_one_rare_byte(opposite_ascii_case(byte));
        }
    }

    fn add_one_rare_byte(&mut self, byte: u8) {
        if !self.rare_set.contains(byte) {
            self.rare_set.add(byte);
            self.count += 1;
            self.rank_sum += freq_rank(byte) as u16;
        }
    }
}

/// A prefilter for scanning for a single "rare" byte.
#[cfg(feature = "perf-literal")]
#[derive(Clone, Debug)]
struct RareBytesOne {
    byte1: u8,
    offset: RareByteOffset,
}

#[cfg(feature = "perf-literal")]
impl PrefilterI for RareBytesOne {
    fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
        memchr::memchr(self.byte1, &haystack[span])
            .map(|i| {
                let pos = span.start + i;
                cmp::max(
                    span.start,
                    pos.saturating_sub(usize::from(self.offset.max)),
                )
            })
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }
}

/// A prefilter for scanning for two "rare" bytes.
#[cfg(feature = "perf-literal")]
#[derive(Clone, Debug)]
struct RareBytesTwo {
    offsets: RareByteOffsets,
    byte1: u8,
    byte2: u8,
}

#[cfg(feature = "perf-literal")]
impl PrefilterI for RareBytesTwo {
    fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
        memchr::memchr2(self.byte1, self.byte2, &haystack[span])
            .map(|i| {
                let pos = span.start + i;
                let offset = self.offsets.set[usize::from(haystack[pos])].max;
                cmp::max(span.start, pos.saturating_sub(usize::from(offset)))
            })
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }
}

/// A prefilter for scanning for three "rare" bytes.
#[cfg(feature = "perf-literal")]
#[derive(Clone, Debug)]
struct RareBytesThree {
    offsets: RareByteOffsets,
    byte1: u8,
    byte2: u8,
    byte3: u8,
}

#[cfg(feature = "perf-literal")]
impl PrefilterI for RareBytesThree {
    fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
        memchr::memchr3(self.byte1, self.byte2, self.byte3, &haystack[span])
            .map(|i| {
                let pos = span.start + i;
                let offset = self.offsets.set[usize::from(haystack[pos])].max;
                cmp::max(span.start, pos.saturating_sub(usize::from(offset)))
            })
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }
}

/// A builder for constructing a starting byte prefilter.
///
/// A starting byte prefilter is a simplistic prefilter that looks for possible
/// matches by reporting all positions corresponding to a particular byte. This
/// generally only takes affect when there are at most 3 distinct possible
/// starting bytes. e.g., the patterns `foo`, `bar`, and `baz` have two
/// distinct starting bytes (`f` and `b`), and this prefilter returns all
/// occurrences of either `f` or `b`.
///
/// In some cases, a heuristic frequency analysis may determine that it would
/// be better not to use this prefilter even when there are 3 or fewer distinct
/// starting bytes.
#[derive(Clone, Debug)]
struct StartBytesBuilder {
    /// Whether this prefilter should account for ASCII case insensitivity or
    /// not.
    ascii_case_insensitive: bool,
    /// The set of starting bytes observed.
    byteset: Vec<bool>,
    /// The number of bytes set to true in `byteset`.
    count: usize,
    /// The sum of frequency ranks for the rare bytes detected. This is
    /// intended to give a heuristic notion of how rare the bytes are.
    rank_sum: u16,
}

impl StartBytesBuilder {
    /// Create a new builder for constructing a start byte prefilter.
    fn new() -> StartBytesBuilder {
        StartBytesBuilder {
            ascii_case_insensitive: false,
            byteset: vec![false; 256],
            count: 0,
            rank_sum: 0,
        }
    }

    /// Enable ASCII case insensitivity. When set, byte strings added to this
    /// builder will be interpreted without respect to ASCII case.
    fn ascii_case_insensitive(mut self, yes: bool) -> StartBytesBuilder {
        self.ascii_case_insensitive = yes;
        self
    }

    /// Build the starting bytes prefilter.
    ///
    /// If there are more than 3 distinct starting bytes, or if heuristics
    /// otherwise determine that this prefilter should not be used, then `None`
    /// is returned.
    fn build(&self) -> Option<Prefilter> {
        #[cfg(feature = "perf-literal")]
        fn imp(builder: &StartBytesBuilder) -> Option<Prefilter> {
            if builder.count > 3 {
                return None;
            }
            let (mut bytes, mut len) = ([0; 3], 0);
            for b in 0..256 {
                if !builder.byteset[b] {
                    continue;
                }
                // We don't handle non-ASCII bytes for now. Getting non-ASCII
                // bytes right is trickier, since we generally don't want to put
                // a leading UTF-8 code unit into a prefilter that isn't ASCII,
                // since they can frequently. Instead, it would be better to use a
                // continuation byte, but this requires more sophisticated analysis
                // of the automaton and a richer prefilter API.
                if b > 0x7F {
                    return None;
                }
                bytes[len] = b as u8;
                len += 1;
            }
            let finder: Arc<dyn PrefilterI> = match len {
                0 => return None,
                1 => Arc::new(StartBytesOne { byte1: bytes[0] }),
                2 => Arc::new(StartBytesTwo {
                    byte1: bytes[0],
                    byte2: bytes[1],
                }),
                3 => Arc::new(StartBytesThree {
                    byte1: bytes[0],
                    byte2: bytes[1],
                    byte3: bytes[2],
                }),
                _ => unreachable!(),
            };
            Some(Prefilter { finder, memory_usage: 0 })
        }

        #[cfg(not(feature = "perf-literal"))]
        fn imp(_: &StartBytesBuilder) -> Option<Prefilter> {
            None
        }

        imp(self)
    }

    /// Add a byte string to this builder.
    ///
    /// All patterns added to an Aho-Corasick automaton should be added to this
    /// builder before attempting to construct the prefilter.
    fn add(&mut self, bytes: &[u8]) {
        if self.count > 3 {
            return;
        }
        if let Some(&byte) = bytes.get(0) {
            self.add_one_byte(byte);
            if self.ascii_case_insensitive {
                self.add_one_byte(opposite_ascii_case(byte));
            }
        }
    }

    fn add_one_byte(&mut self, byte: u8) {
        if !self.byteset[byte as usize] {
            self.byteset[byte as usize] = true;
            self.count += 1;
            self.rank_sum += freq_rank(byte) as u16;
        }
    }
}

/// A prefilter for scanning for a single starting byte.
#[cfg(feature = "perf-literal")]
#[derive(Clone, Debug)]
struct StartBytesOne {
    byte1: u8,
}

#[cfg(feature = "perf-literal")]
impl PrefilterI for StartBytesOne {
    fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
        memchr::memchr(self.byte1, &haystack[span])
            .map(|i| span.start + i)
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }
}

/// A prefilter for scanning for two starting bytes.
#[cfg(feature = "perf-literal")]
#[derive(Clone, Debug)]
struct StartBytesTwo {
    byte1: u8,
    byte2: u8,
}

#[cfg(feature = "perf-literal")]
impl PrefilterI for StartBytesTwo {
    fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
        memchr::memchr2(self.byte1, self.byte2, &haystack[span])
            .map(|i| span.start + i)
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }
}

/// A prefilter for scanning for three starting bytes.
#[cfg(feature = "perf-literal")]
#[derive(Clone, Debug)]
struct StartBytesThree {
    byte1: u8,
    byte2: u8,
    byte3: u8,
}

#[cfg(feature = "perf-literal")]
impl PrefilterI for StartBytesThree {
    fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
        memchr::memchr3(self.byte1, self.byte2, self.byte3, &haystack[span])
            .map(|i| span.start + i)
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }
}

/// If the given byte is an ASCII letter, then return it in the opposite case.
/// e.g., Given `b'A'`, this returns `b'a'`, and given `b'a'`, this returns
/// `b'A'`. If a non-ASCII letter is given, then the given byte is returned.
pub(crate) fn opposite_ascii_case(b: u8) -> u8 {
    if b'A' <= b && b <= b'Z' {
        b.to_ascii_lowercase()
    } else if b'a' <= b && b <= b'z' {
        b.to_ascii_uppercase()
    } else {
        b
    }
}

/// Return the frequency rank of the given byte. The higher the rank, the more
/// common the byte (heuristically speaking).
fn freq_rank(b: u8) -> u8 {
    use crate::util::byte_frequencies::BYTE_FREQUENCIES;
    BYTE_FREQUENCIES[b as usize]
}